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Quantum Merlin-Arthur ( )QMA

(Completeness)  a valid coloring: 
        benign Merlin will convince Arthur w.p. 
(Soundness)  valid coloring:

      no adversarial Merlin can fool Arthur w.p.
the gap is .
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More Merlins = More power?

ΠQ |ψ1⟩ |ψ2⟩⋯ |ψk⟩ |0⟩

⋮
|ψk⟩

|ψ1⟩

|ψ2⟩



More Merlins = More power?

Product test [Harrow-Montanaro 10]
Given (copies of) pure state , is it a 
product state, i.e. 

|ψ⟩ ∈ H1 ⊗ ⋯ ⊗ Hk
|ψ⟩ = |ϕ1⟩ ⊗ |ϕ2⟩ ⊗ ⋯ |ϕk⟩?
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More Merlins = More power?

⋮

swap test

Product test [Harrow-Montanaro 10]

|ψ⟩ |ψ⟩



More Merlins = More power?

Theorem. (Harrow-Montanaro 10)

Suppose  ,

Then  pass product test w.p. .

max
product state ϕ

|⟨ψ, ϕ⟩ |2 = 1 − ϵ < 1

|ψ⟩ ≤ 1 − Θ(ϵ)

Cor. .QMAm(k) ⊆ QMAkm(2)
Pf. Let the 2 provers simulate  provers.
Apply one of the following test
• product test
• the verification V on one proof

k
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Quantum Merlin-Arthur ( )QMA+

|ψ⟩

ΠQ |ψ⟩ |0⟩

15

|ψ⟩ = ∑
i

αi | i⟩, αi ≥ 0

(Completeness) “  a valid coloring”: 
        benign Merlins will convince Arthur w.p. 
(Soundness) “  valid coloring”:

      no adversarial Merlins can fool Arthur w.p.
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Small-set expansion (SSE) problem
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A  protocol for SSEQMA+(2)

Arthur: (receives many )
• check equality
• take a random , apply it to ; 

compare  with 
• sparsity test
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Sparsity Test

|ψ⟩ =
1
|S | ∑

i∈S

| i⟩ .

Goal: test if  is a uniform superposition of an arbitrary
          subset  of  (of size  for some given const .)

|ψ⟩
S [n] δn δ



Sparsity Test

Protocol: 
Let 

• Ask for many copies of (expected form)
          

• Estimate
    ,   ,   .

ACCEPT if ,   

|μ⟩ =
1

n ∑
i

| i⟩ .

|ψ⟩ =
1
|S | ∑

i∈S

| i⟩, |ψC⟩ =
1

n − |S | ∑
i∉S

| i⟩ .

α̃ = ⟨ψ |ψC⟩2 δ̃ = ⟨ψ |μ⟩2 β̃ = ⟨ψC |μ⟩2

α̃ ≈ 0 δ̃ + β̃ ≈ 1
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Sparsity Test

Pf.

By Cauchy-Schwarz,

     ,        ,

equality holds when  is the uniform superposition over .

⟨ψ |μ⟩2 ≤
|S |
n

⟨ψC |μ⟩2 ≤ 1 −
|S |
n

|ψ⟩ S

|ψ⟩

|ψC⟩

S

[n]∖S

If ⟨ψ |ψC⟩ ≈ 0

Lemma. If  passes sparsity test, a subset state|ψ⟩ |ψ⟩ ≈
non-negativity



Roadmap: Global, coherent protocols for

‣ Small-set expansion problem
‣ Unique games problem
‣ Constraints satisfiability problem

with a constant gap.
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G e
f(u,v) : Σ → Σ

val(G) = max
ℓ

E(u,v)∈G[1f(u,v)(ℓ(u))=ℓ(v)]



Unique games

Def. -UG(1 − η, γ)
(yes): 
(no): 

val(G) ≥ 1 − η
val(G) ≤ γ

(d-regular graph) , for each edge , 
bijection . 

G e
f(u,v) : Σ → Σ

val(G) = max
ℓ

E(u,v)∈G[1f(u,v)(ℓ(u))=ℓ(v)]
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Merlin: (faithful in yes case)
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In the no case, 
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A  protocol for UGQMA+(2)

Merlin: (faithful in yes case)

|ψ⟩ = ∑
v∈G

|v⟩ |ℓ(v)⟩

Arthur: (receives copies of )
• check equality
• take a random , e.g.  is an 

edge in ,
      

    compare  and 
• validity test

  

|ψ⟩

Mr (u, v)
Mr

𝒯r : |u⟩ |ℓ⟩ ↦ |v⟩ | f(u,v)(ℓ)⟩
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Theorem 2.
, with a 

 gap
UG ∈ QMA+

log(2)
Ω(1)

Cor.
, with a 

 gap
NP ⊆ QMA+

log(2)
Ω(1)

as -UG is NP-hard(1/2,γ)



Validity Test

|ψ⟩ =
1

n

n

∑
i=1

| i⟩ |xi⟩ .

Assume: n variables , where  is of constant size
Goal: test if

xi ∈ Σ Σ

(some valid assignment)
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Validity Test

Protocol: 

• Suppose  in addition with some  can pass 
sparsity test,  furthermore . Thus,

          

|ψ⟩ |ψC⟩
⟨ψ |μ⟩2 ≈

1
|Σ |

|ψ⟩ ≈
1
|S | ∑

(i,xi)∈S

| i⟩ |xi⟩ .

Need to make sure all s are presenti

• Apply Fourier transform to the second register, and 
measure it. 

ACCEPT if the probability  of observe 0

    

p0

p0 <
1

|Σ |
+ ϵ .



Validity Test

Pf. Compare       v.s.   | i⟩ |xi⟩
k

∑
j=1

1

k
| i⟩ |xj

i ⟩

Lemma. If  passes sparsity test & validity test, 
encode a valid assignment.

|ψ⟩
|ψ⟩ ≈
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∑
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1

k
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i ⟩
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Validity Test

Pf. Compare       v.s.   | i⟩ |xi⟩
k

∑
j=1

1

k
| i⟩ |xj

i ⟩

p0 =
1

|Σ |
p0 =

k
|Σ |

Thus, if  is far from being valid, then prob. of 
observing 0 is .

|ψ⟩
≫ 1/ |Σ |

Lemma. If  passes sparsity test & validity test, 
encode a valid assignment.

|ψ⟩
|ψ⟩ ≈
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‣ Constraint satisfaction problem

with a constant gap.
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A -constraint satisfaction problem (CSP):k

Classical, NP-complete problems

⋮ ⋮

constraints

x1

variables

C1
C2

Cm

x2

xn

Each constraint  
• depends on  variables
• arbitrary predicate
• , constant size alphabet

Ci(xi1, xi2, …, xik)
k

xi ∈ Σi

Question: 

is there assignment that 
satisfies all constraints?

PCP theorem.

distinguish whether
 or 1 ≤ ϵ



A general k-CSP (PCP theorem)

PCP  v.s. 
NP-hard

1 ϵ
⋮ ⋮

constraints

x1

variables

C1
C2

Cm

x2

xn

NP-complete k-CSP



⋮ ⋮

constraints

x1

variables

C1
C2

Cm

x2

xn

 protocol for k-CSPQMA+(2)

Merlin: (faithful in yes case)

|ψ⟩ =
1

m

m

∑
i=1

|Ci⟩ |vi,1vi,2…vi,k⟩



⋮ ⋮

constraints

x1

variables

C1
C2

Cm

x2

xn

 protocol for k-CSPQMA+(2)

Merlin: (faithful in yes case)

|ψ⟩ =
1

m

m

∑
i=1

|Ci⟩ |vi,1vi,2…vi,k⟩

First, it’s easy to verify the constraints,
   .|Ci⟩ |v1v2…vk⟩ |0⟩ ↦ |Ci⟩ |v1v2…vk⟩ |Ci(v1v2…vk)⟩



⋮ ⋮

constraints

x1

variables

C1
C2

Cm

x2

xn

 protocol for k-CSPQMA+(2)

Merlin: (faithful in yes case)

|ψ⟩ =
1

m

m

∑
i=1

|Ci⟩ |vi,1vi,2…vi,k⟩

First, it’s easy to verify the constraints,
   .|Ci⟩ |v1v2…vk⟩ |0⟩ ↦ |Ci⟩ |v1v2…vk⟩ |Ci(v1v2…vk)⟩

Consistency?



⋮ ⋮

constraints

x1

variables

C1
C2

Cm

x2

xn

Regularization

C1

x1

Cm

Merlin: (faithful in yes case)

|ψ⟩ =
1

m

m

∑
i=1

|Ci⟩ |vi,1vi,2…vi,k⟩



⋮ ⋮

constraints

x1

variables

C1
C2

Cm

x2

xn
C1

Regularization

Cm

Merlin: (faithful in yes case)

|ψ⟩ =
1

m

m

∑
i=1

|Ci⟩ |vi,1vi,2…vi,k⟩



⋮ ⋮

constraints

x1

variables

C1
C2

Cm

x2

xn
C1

Regularization

Cm

Expander: 
1. d-regular graph
2. expansion

Merlin: (faithful in yes case)

|ψ⟩ =
1

m

m

∑
i=1

|Ci⟩ |vi,1vi,2…vi,k⟩



⋮ ⋮

constraints

x1

variables

C1
C2

Cm

x2

xn
C1

Regularization

Cm

Expander: 
1. d-regular graph
2. expansion

Merlin: (faithful in yes case)

|ψ⟩ =
1

m

m

∑
i=1

|Ci⟩ |vi,1vi,2…vi,k⟩



⋮ ⋮

constraints

x1

variables

C1
C2

Cm

x2

xn
C1

Regularization

Cm

Expander: 
1. d-regular graph
2. expansion

Expansion property ensures
in the soundness case, a const. 
fraction of constraints are not 
satisfiable.

Merlin: (faithful in yes case)

|ψ⟩ =
1

m

m

∑
i=1

|Ci⟩ |vi,1vi,2…vi,k⟩



Regularization

= +
variable j σj,1 σj,2

C1 Cm

Expander: 
1. d-regular graph
2. expansion

Merlin: (faithful in yes case)

|ψ⟩ =
1

m

m

∑
i=1

|Ci⟩ |vi,1vi,2…vi,k⟩



Regularization

|ψ⟩ =
1

m

m

∑
i=1

|Ci⟩ |vi,1vi,2…vi,k⟩

= +
variable j σj,1 σj,2

C1 Cm

Expander: 
1. d-regular graph
2. expansion

Merlin: (faithful in yes case)

|ψ⟩ =
1

m

m

∑
i=1

|Ci⟩ |vi,1vi,2…vi,k⟩



Regularization

|ψ⟩ =
1

m

m

∑
i=1

|Ci⟩ |vi,1vi,2…vi,k⟩

= +
variable j σj,1 σj,2

↦
1
mq ∑

i
∑
j∈Ci

|Ci⟩ | j⟩ |xi,j⟩

(from  and , we know the 
variables and its value)

Ci v

C1 Cm

Expander: 
1. d-regular graph
2. expansion

Merlin: (faithful in yes case)

|ψ⟩ =
1

m

m

∑
i=1

|Ci⟩ |vi,1vi,2…vi,k⟩



Regularization

|ψ⟩ =
1

m

m

∑
i=1

|Ci⟩ |vi,1vi,2…vi,k⟩

= +
variable j σj,1 σj,2

↦
1
mq ∑

i
∑
j∈Ci

|Ci⟩ | j⟩ |xi,j⟩

(from  and , we know the 
variables and its value)

Ci v

↦
1
mq ∑

i
∑
j∈Ci

|Cσj,1(i)⟩ | j⟩ |xi,j⟩
(apply some permutation)

C1 Cm

Expander: 
1. d-regular graph
2. expansion

Merlin: (faithful in yes case)

|ψ⟩ =
1

m

m

∑
i=1

|Ci⟩ |vi,1vi,2…vi,k⟩



Regularization

|ψ⟩ =
1

m

m

∑
i=1

|Ci⟩ |vi,1vi,2…vi,k⟩

= +
variable j σj,1 σj,2

↦
1
mq ∑

i
∑
j∈Ci

|Ci⟩ | j⟩ |xi,j⟩

(from  and , we know the 
variables and its value)

Ci v

↦
1
mq ∑

i
∑
j∈Ci

|Cσj,1(i)⟩ | j⟩ |xi,j⟩
(apply some permutation)SwapTest

C1 Cm

Expander: 
1. d-regular graph
2. expansion

Merlin: (faithful in yes case)

|ψ⟩ =
1

m

m

∑
i=1

|Ci⟩ |vi,1vi,2…vi,k⟩



What about NEXP?

C1 Cm

Expander: 
1. d-regular graph
2. expansion

= +
variable j σj,1 σj,2

Merlin: (faithful in yes case)

|ψ⟩ =
1

m

m

∑
i=1

|Ci⟩ |vi,1vi,2…vi,k⟩

|ψ⟩ =
1

m

m

∑
i=1

|Ci⟩ |vi,1vi,2…vi,k⟩

↦
1
mq ∑

i
∑
j∈Ci

|Ci⟩ | j⟩ |xi,j⟩

(from  and , we know the 
variables and its value)

Ci v

↦
1
mq ∑

i
∑
j∈Ci

|Cσj,1(i)⟩ | j⟩ |xi,j⟩
(apply some permutation)



What about NEXP?

Exponentially large 
CSP, expanders

C1 Cm

Expander: 
1. d-regular graph
2. expansion

= +
variable j σj,1 σj,2

Merlin: (faithful in yes case)

|ψ⟩ =
1

m

m

∑
i=1

|Ci⟩ |vi,1vi,2…vi,k⟩

|ψ⟩ =
1

m

m

∑
i=1

|Ci⟩ |vi,1vi,2…vi,k⟩

↦
1
mq ∑

i
∑
j∈Ci

|Ci⟩ | j⟩ |xi,j⟩

(from  and , we know the 
variables and its value)

Ci v

↦
1
mq ∑

i
∑
j∈Ci

|Cσj,1(i)⟩ | j⟩ |xi,j⟩
(apply some permutation)



What about NEXP?

Exponentially large 
CSP, expanders

Needs to be efficient

C1 Cm

Expander: 
1. d-regular graph
2. expansion

= +
variable j σj,1 σj,2

Merlin: (faithful in yes case)

|ψ⟩ =
1

m

m

∑
i=1

|Ci⟩ |vi,1vi,2…vi,k⟩

|ψ⟩ =
1

m

m

∑
i=1

|Ci⟩ |vi,1vi,2…vi,k⟩

↦
1
mq ∑

i
∑
j∈Ci

|Ci⟩ | j⟩ |xi,j⟩

(from  and , we know the 
variables and its value)

Ci v

↦
1
mq ∑

i
∑
j∈Ci

|Cσj,1(i)⟩ | j⟩ |xi,j⟩
(apply some permutation)



Theorem. .NEXP ⊆ QMA+(2) ⊆ NEXP



Theorem. .NEXP ⊆ QMA+(2) ⊆ NEXP



Thank you!

Theorem. .NEXP ⊆ QMA+(2) ⊆ NEXP


