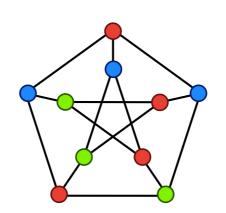
The Power of Unentangled Quantum Proofs with Non-negative Amplitudes

Fernando G. Jeronimo, Pei Wu Quantum Colloquium @ Simons April 2023

Quantum Merlin-Arthur (QMA)

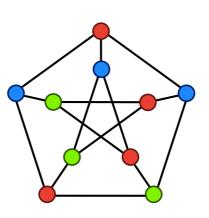
poly-size $|\psi\rangle$



 $\Pi Q |\psi\rangle |0\rangle$ BQP computation

Quantum Merlin-Arthur (QMA)

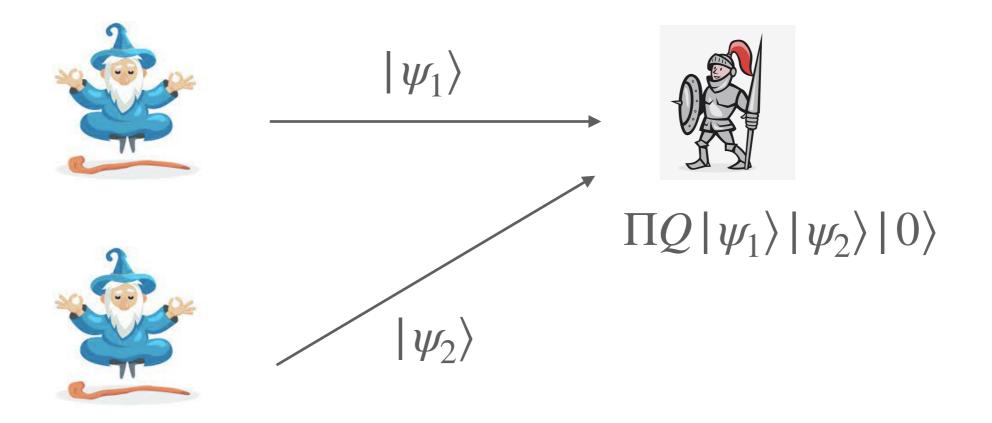
poly-size $|\psi\rangle$

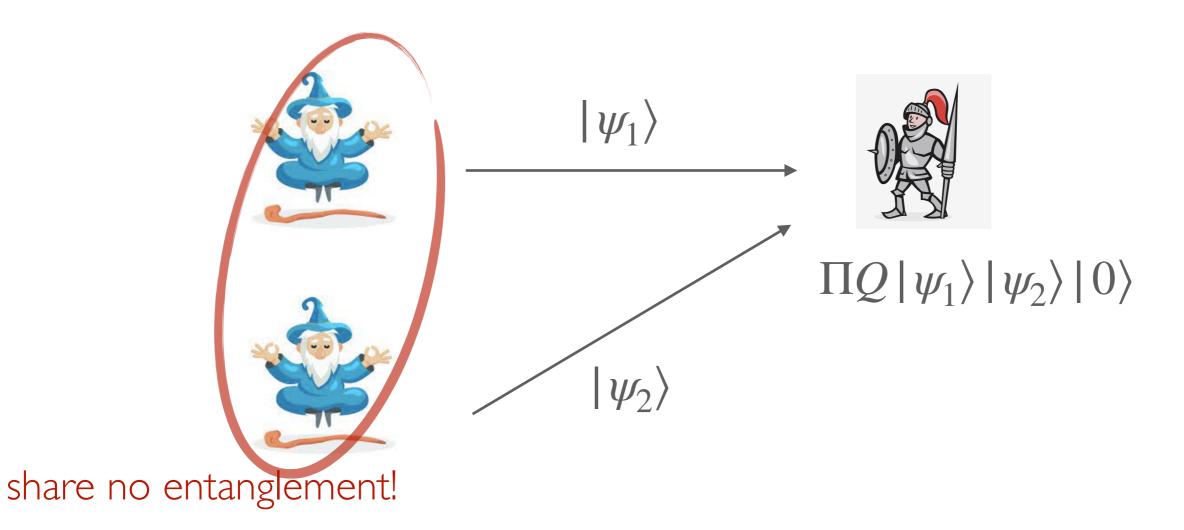


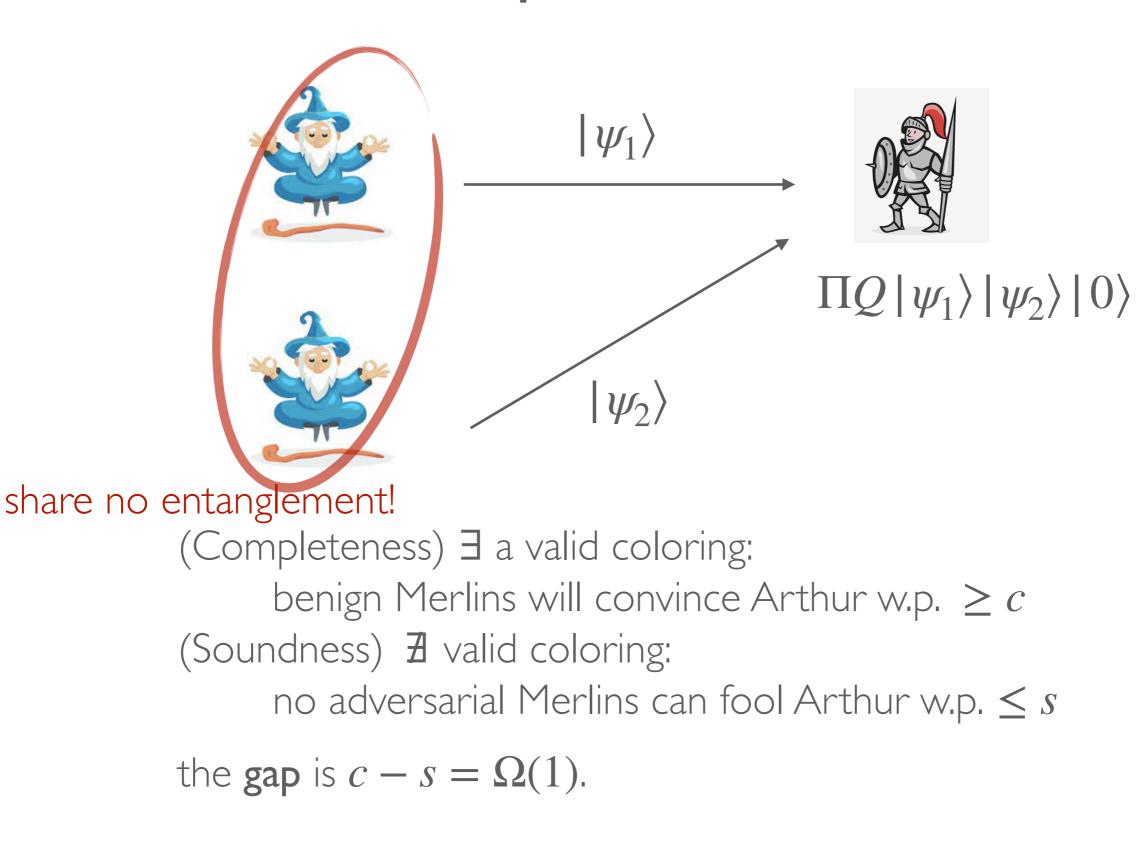
 $\Pi Q |\psi\rangle |0\rangle$ BQP computation

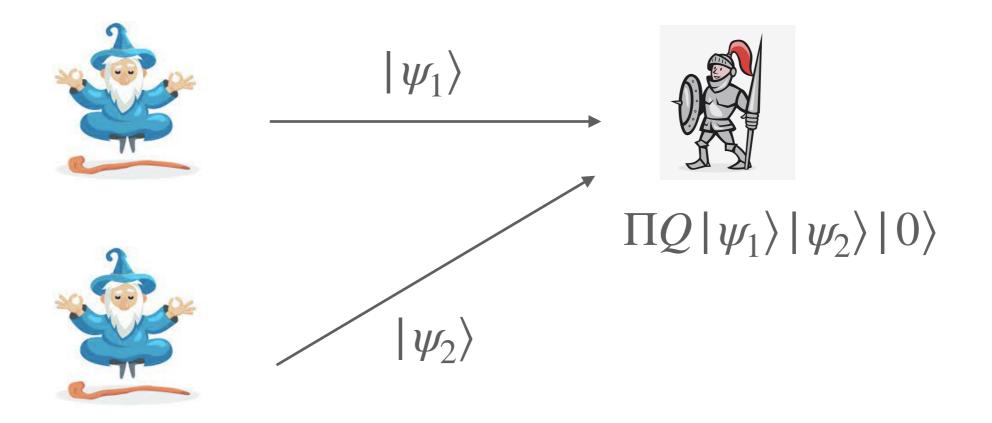
(Completeness) \exists a valid coloring: benign Merlin will convince Arthur w.p. $\geq c$ (Soundness) \exists valid coloring: no adversarial Merlin can fool Arthur w.p. $\leq s$

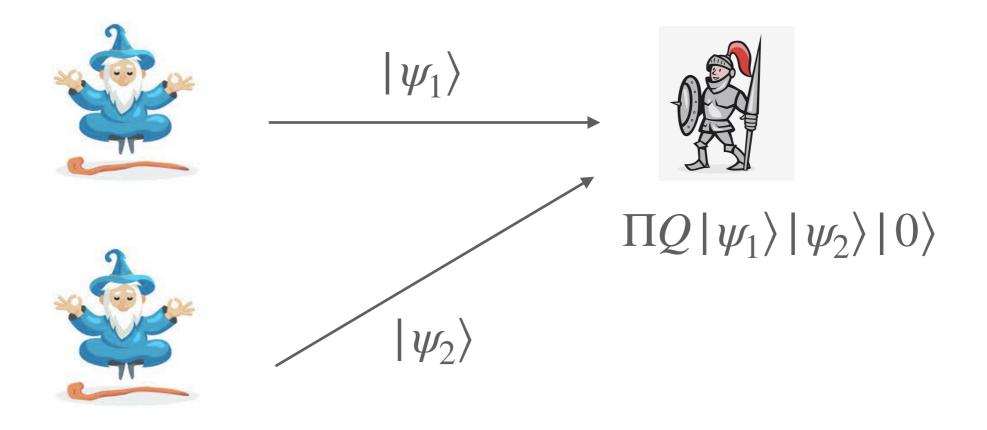
the gap is $c - s = \Omega(1)$.



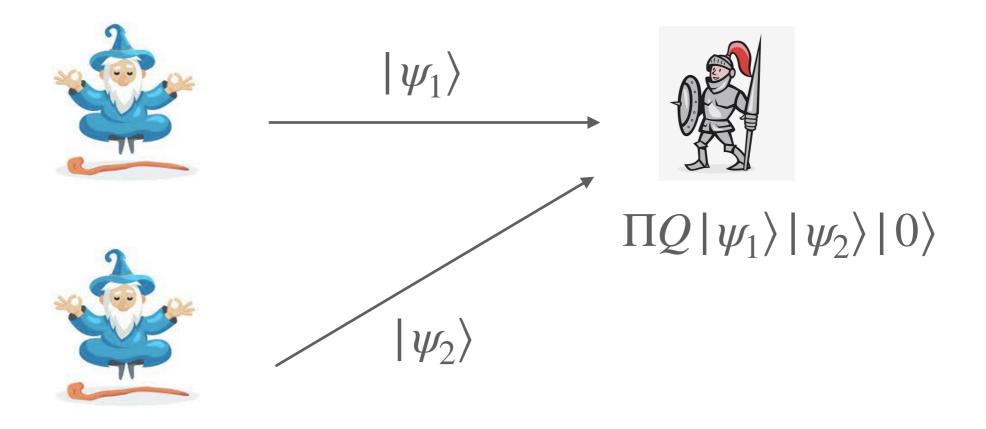




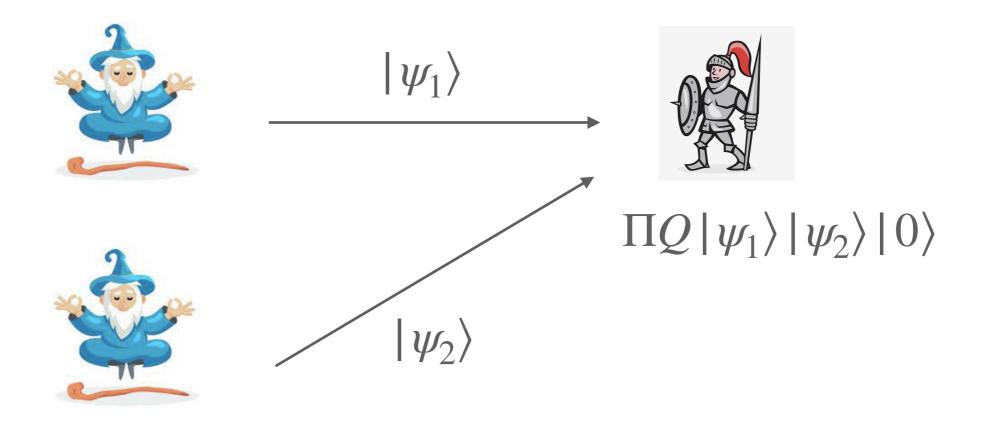




Power of QMA(2), as a complexity class?

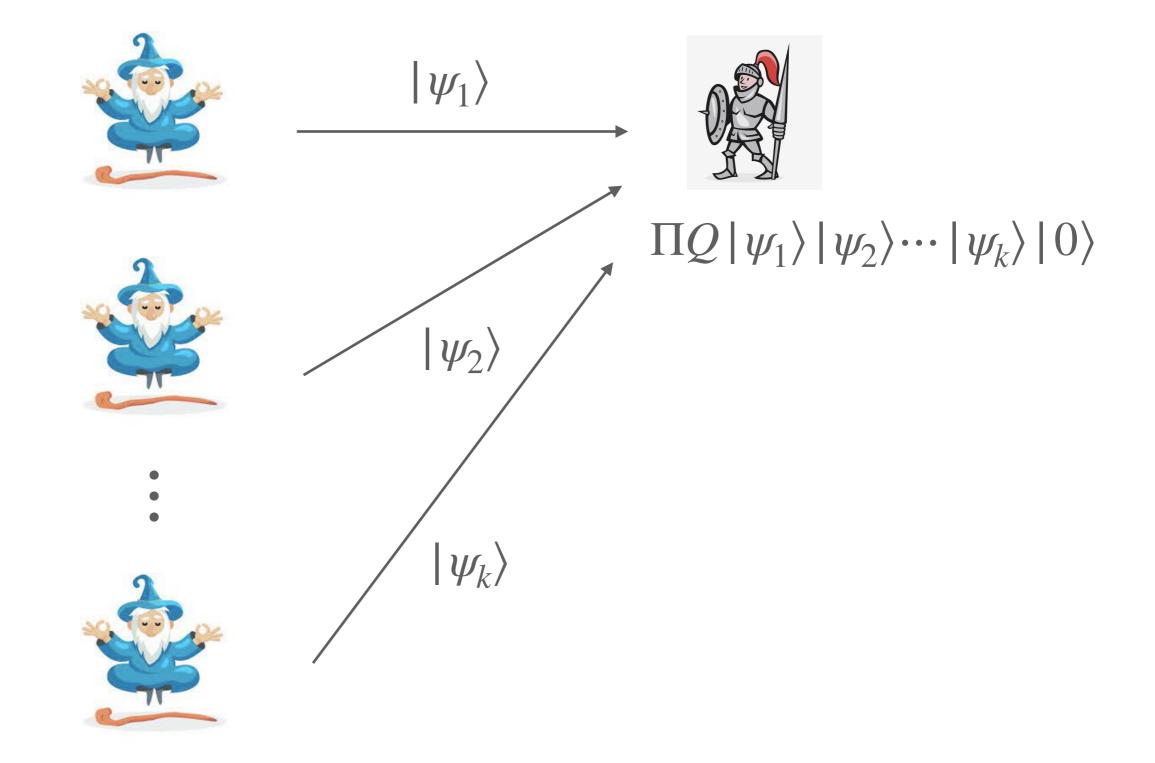


Power of QMA(2), as a complexity class? $QMA \subseteq QMA(2)$



Power of QMA(2), as a complexity class?

 $\mathsf{QMA} \subseteq \mathsf{QMA}(2) \subseteq \mathsf{NEXP}$

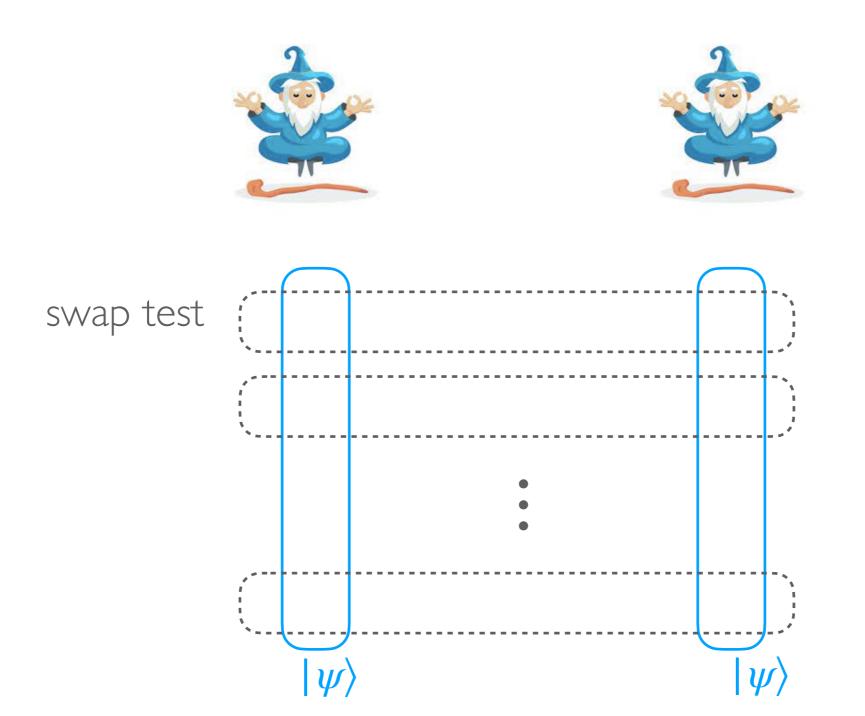


Product test [Harrow-Montanaro 10]

Given (copies of) pure state $|\psi\rangle \in H_1 \otimes \cdots \otimes H_k$, is it a product state, i.e. $|\psi\rangle = |\phi_1\rangle \otimes |\phi_2\rangle \otimes \cdots |\phi_k\rangle$?

Product test [Harrow-Montanaro 10]

Product test [Harrow-Montanaro 10]



Theorem. (Harrow-Montanaro 10)

Suppose $\max_{\substack{\text{product state } \phi}} |\langle \psi, \phi \rangle|^2 = 1 - \epsilon < 1 ,$ Then $|\psi\rangle$ pass product test w.p. $\leq 1 - \Theta(\epsilon)$.

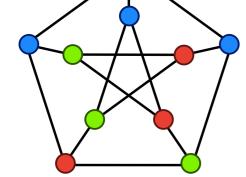
Cor. $QMA_m(k) \subseteq QMA_{km}(2)$.

Pf. Let the 2 provers simulate k provers. Apply one of the following test

- product test
- the verification V on one proof

Merlin: (faithful)

$$|\psi\rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} |i\rangle |c_i\rangle$$



a 3 coloring instance

Merlin: (faithful)

$$|\psi\rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} |i\rangle |c_i\rangle$$

Arthur: (receives $|\psi_1\rangle$, $|\psi_2\rangle$)

- check equality
- make measurements
 - if same vertex observed, consistent color
 - if adjacent vertices observed, distinct colors

a 3 coloring instance

Merlin: (faithful)

$$|\psi\rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} |i\rangle |c_i\rangle$$

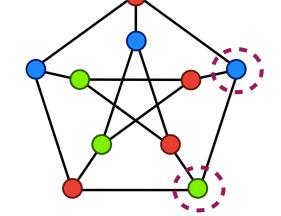
Arthur: (receives $|\psi_1\rangle$, $|\psi_2\rangle$)

- check equality
- make measurements
 - if same vertex observed, consistent color
 - if adjacent vertices observed, distinct colors

a 3 coloring instance

Merlin: (faithful)

$$|\psi\rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} |i\rangle |c_i\rangle$$

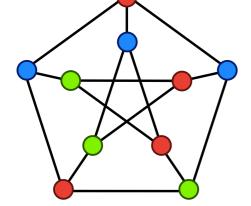


a 3 coloring instance

- check equality
- make measurements
 - if same vertex observed, consistent color
 - if adjacent vertices observed, distinct colors

Merlin: (faithful)

$$|\psi\rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} |i\rangle |c_i\rangle$$

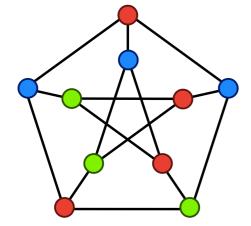


a 3 coloring instance

- check equality
- make measurements
 - if same vertex observed, consistent color
 - if adjacent vertices observed, distinct colors
- ''all present''

Merlin: (faithful)

$$|\psi\rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} |i\rangle |c_i\rangle$$



a 3 coloring instance

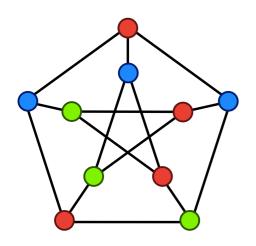
- check equality
- make measurements
 - if same vertex observed, consistent color
 - if adjacent vertices observed, distinct colors
- ''all present''

1. already,
$$|\psi\rangle \approx \sum_{i \in [n]} \alpha_i |i\rangle |c_i\rangle$$

2. compare with $\sum_{i \in [n]} |i\rangle$

Merlin: (faithful)

$$|\psi\rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} |i\rangle |c_i\rangle$$



Theorem. NP \subseteq QMA_{log}(2) with a a 1 v.s. 1 – 1/poly(*n*) gap.

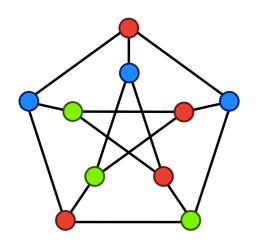
- check equality
- make measurements
 - if same vertex observed, consistent color
 - if adjacent vertices observed, distinct colors
 - "all present"

1. already,
$$|\psi\rangle \approx \sum_{i \in [n]} \alpha_i |i\rangle |c_i\rangle$$

2. compare with $\sum_{i \in [n]} |i\rangle$

Merlin: (faithful)

$$|\psi\rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} |i\rangle |c_i\rangle$$



Theorem. $NP \subseteq QMA_{log}(2)$ with a a 1 v.s. 1 – 1/poly(*n*) gap. not ideal

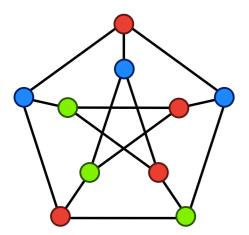
- check equality
- make measurements
 - if same vertex observed, consistent color
 - if adjacent vertices observed, distinct colors
 - "all present"

1. already,
$$|\psi\rangle \approx \sum_{i \in [n]} \alpha_i |i\rangle |c_i\rangle$$

2. compare with $\sum_{i \in [n]} |i\rangle$

Merlin: (faithful)

$$|\psi\rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} |i\rangle |c_i\rangle$$



Theorem. $NP \subseteq QMA_{log}(2)$ with a a 1 v.s. 1 – 1/poly(*n*) gap. not ideal

- check equality
- make measurements OCO
 - if same vertex observed, consistent color
 - if adjacent vertices observed, distinct colors
- "all present"

1. already,
$$|\psi\rangle \approx \sum_{i \in [n]} \alpha_i |i\rangle |c_i\rangle$$

2. compare with $\sum_{i \in [n]} |i\rangle$

Roadmap: Global protocols for

Roadmap: Global protocols for

- Small-set expansion problem
- Unique games problem
- Constraint satisfaction problem

Roadmap: Global protocols for

- Small-set expansion problem
- Unique games problem
- Constraint satisfaction problem

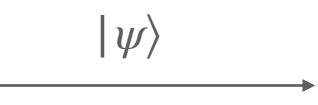
''expansion, robustness''
+non-negativity

Roadmap: Global protocols for

Small-set expansion problem

- Unique games problem
- Constraint satisfaction problem

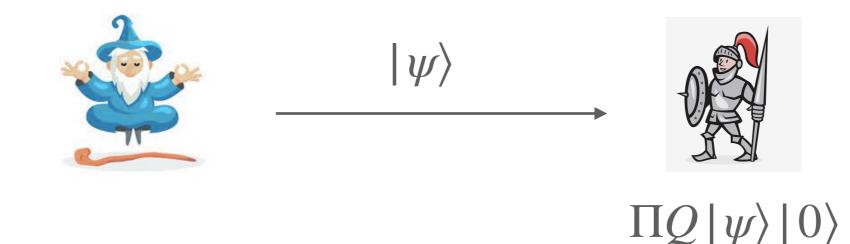
Quantum Merlin-Arthur (QMA⁺)



$\Pi Q |\psi\rangle |0\rangle$

 $|\psi\rangle = \sum_{i} \alpha_{i} |i\rangle, \quad \alpha_{i} \ge 0$

Quantum Merlin-Arthur (QMA⁺)



$$|\psi\rangle = \sum_{i} \alpha_{i} |i\rangle, \quad \alpha_{i} \ge 0$$

(Completeness) " \exists a valid coloring": benign Merlins will convince Arthur w.p. $\geq c$ (Soundness) " \exists valid coloring": no adversarial Merlins can fool Arthur w.p. $\leq s$

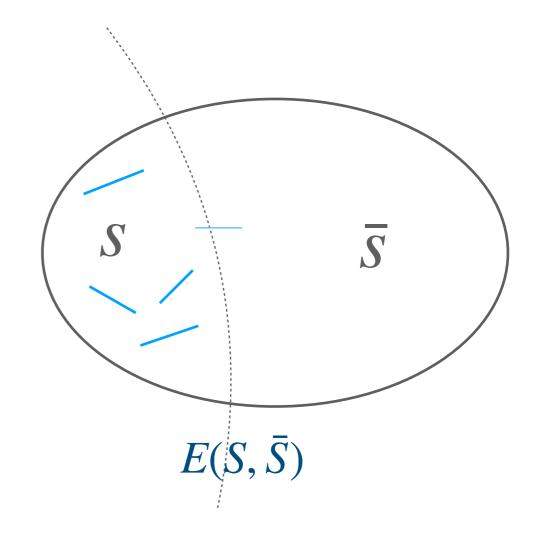
the gap is $c - s = \Omega(1)$.

Small-set expansion (SSE) problem

Def. Small-Set Expansion

d-regular graph G,

(yes): exists
$$S$$
, $|S| \le \delta n$,
$$\frac{|E(S, \overline{S})|}{d|S|} \approx 0.$$



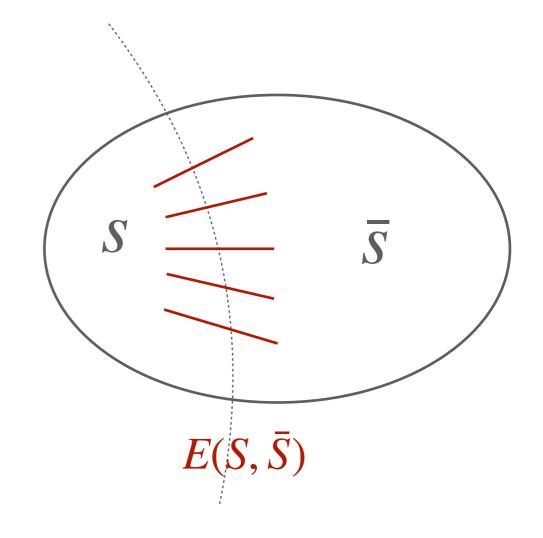
Small-set expansion (SSE) problem

Def. Small-Set Expansion

d-regular graph G,

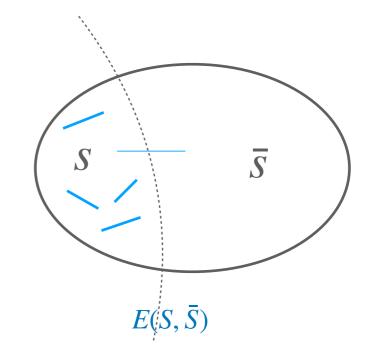
(yes): exists
$$S$$
, $|S| \le \delta n$,
$$\frac{|E(S, \overline{S})|}{d|S|} \approx 0.$$

(no): for all
$$S$$
, $|S| \leq \delta n$,
$$\frac{|E(S, \overline{S})|}{d|S|} \approx 1.$$

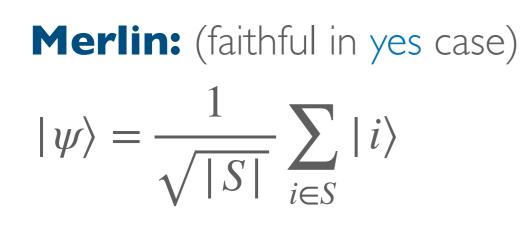


A QMA⁺(2) protocol for SSE

Merlin: (faithful in yes case) $|\psi\rangle = \frac{1}{\sqrt{|S|}} \sum_{i \in S} |i\rangle$

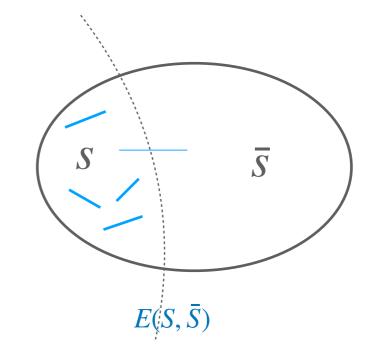


A QMA⁺(2) protocol for SSE



Arthur: (receives many $|\psi\rangle$)

• check equality

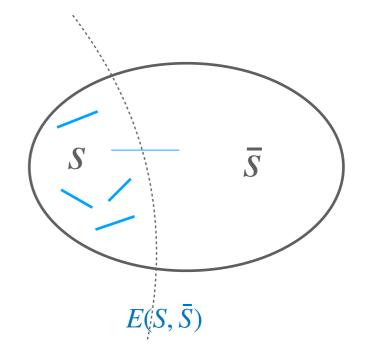


A QMA⁺(2) protocol for SSE

Merlin: (faithful in yes case) $|\psi\rangle = \frac{1}{\sqrt{|S|}} \sum_{i \in S} |i\rangle$

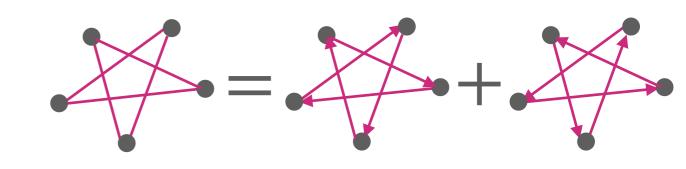
Arthur: (receives many $|\psi\rangle$)

• check equality



Fact. d-regular graph G, can be seen as d permutations

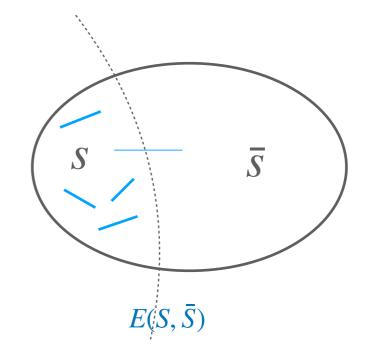
$$A_G = \sum_{r \in [d]} M_r$$



Merlin: (faithful in yes case) $|\psi\rangle = \frac{1}{\sqrt{|S|}} \sum_{i \in S} |i\rangle$

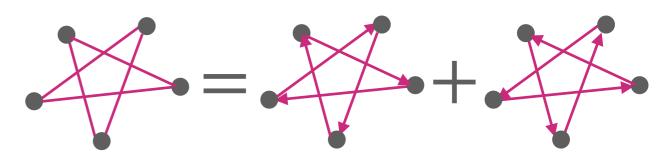
Arthur: (receives many $|\psi\rangle$)

- check equality
- take a random M_r , apply it to $|\psi\rangle$; compare $M_r |\psi\rangle$ with $|\psi\rangle$



Fact. d-regular graph G, can be seen as d permutations

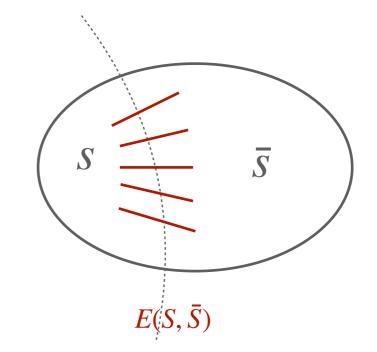
$$A_G = \sum_{r \in [d]} M_{r}$$



Merlin: (faithful in yes case) $|\psi\rangle = \frac{1}{\sqrt{|S|}} \sum_{i \in S} |i\rangle$

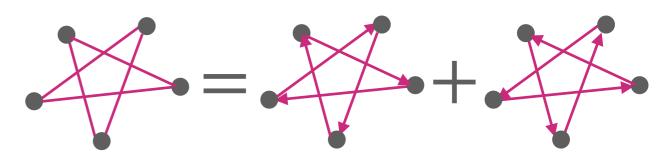
Arthur: (receives many $|\psi\rangle$)

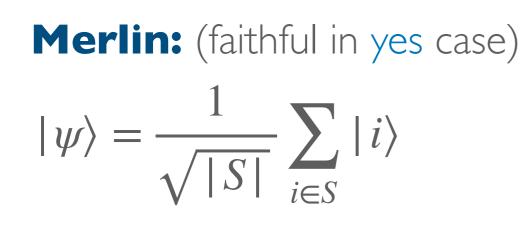
- check equality
- take a random M_r , apply it to $|\psi\rangle$; compare $M_r |\psi\rangle$ with $|\psi\rangle$



Fact. d-regular graph G, can be seen as d permutations

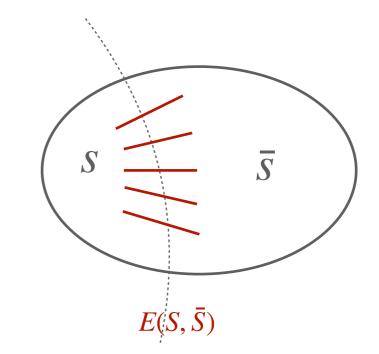
$$A_G = \sum_{r \in [d]} M_{r}$$

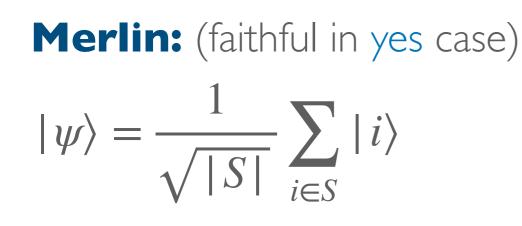




Arthur: (receives many $|\psi\rangle$)

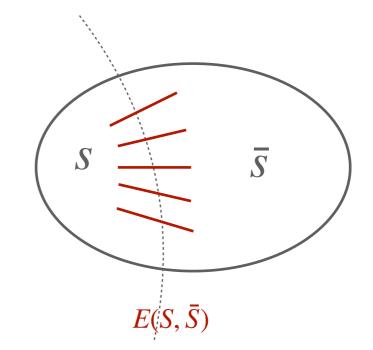
- check equality
- take a random M_r , apply it to $|\psi\rangle$; compare $M_r |\psi\rangle$ with $|\psi\rangle$
- sparsity test





Arthur: (receives many $|\psi\rangle$)

- check equality
- take a random M_r , apply it to $|\psi\rangle$; compare $M_r |\psi\rangle$ with $|\psi\rangle$
- sparsity test



Theorem I. SSE \in QMA⁺_{log}(2), with a $\Omega(1)$ gap

Goal: test if $|\psi\rangle$ is a uniform superposition of an arbitrary subset *S* of [n] (of size δn for some given const δ .)

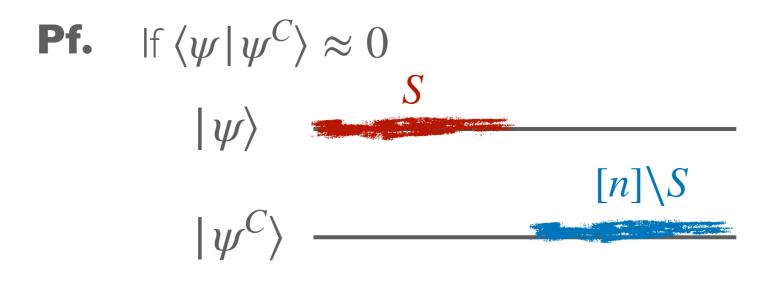
$$|\psi\rangle = \frac{1}{\sqrt{|S|}} \sum_{i \in S} |i\rangle.$$

Protocol: Let $|\mu\rangle = \frac{1}{\sqrt{n}} \sum_{i} |i\rangle$.

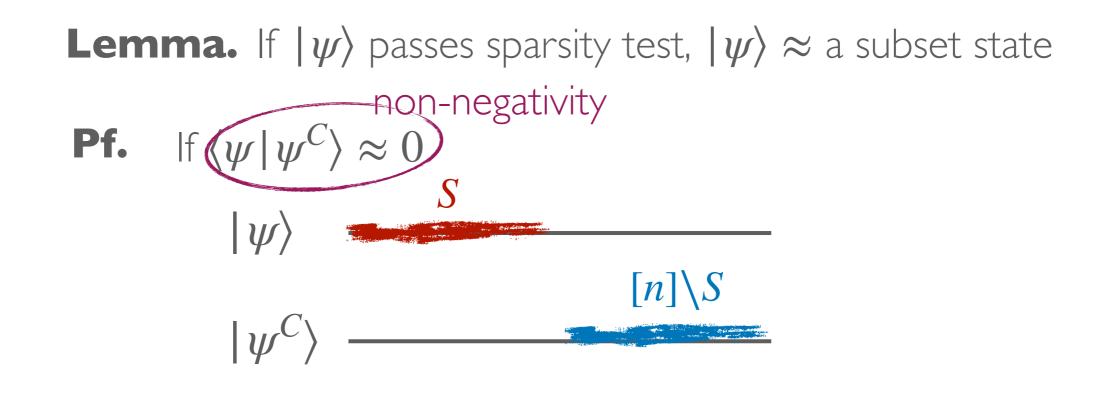
- Ask for many copies of (expected form) $|\psi\rangle = \frac{1}{\sqrt{|S|}} \sum_{i \in S} |i\rangle, \quad |\psi^C\rangle = \frac{1}{\sqrt{n - |S|}} \sum_{i \notin S} |i\rangle.$
- Estimate $\tilde{\alpha} = \langle \psi | \psi^C \rangle^2$, $\tilde{\delta} = \langle \psi | \mu \rangle^2$, $\tilde{\beta} = \langle \psi^C | \mu \rangle^2$.

ACCEPT if $\tilde{\alpha} \approx 0$, $\tilde{\delta} + \tilde{\beta} \approx 1$

Lemma. If $|\psi\rangle$ passes sparsity test, $|\psi\rangle\approx$ a subset state



Lemma. If $|\psi\rangle$ passes sparsity test, $|\psi\rangle \approx$ a subset state **Pf.** If $|\psi|\psi^{C}\rangle \approx 0$ $|\psi\rangle$ $[n] \setminus S$



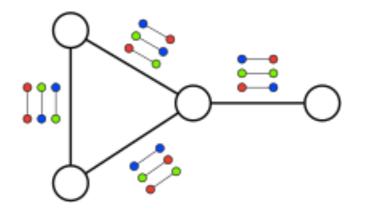
By Cauchy-Schwarz, $\langle \psi | \mu \rangle^2 \leq \frac{|S|}{n}, \qquad \langle \psi^C | \mu \rangle^2 \leq 1 - \frac{|S|}{n},$ equality holds when $|\psi\rangle$ is the uniform superposition over S. Roadmap: Global, coherent protocols for

- Small-set expansion problem
- Unique games problem
- Constraints satisfiability problem

with a constant gap.

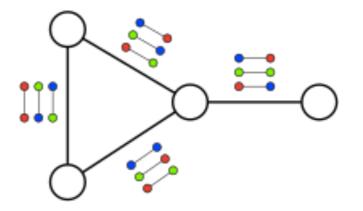
Unique games

(d-regular graph)
$$G$$
, for each edge e ,
bijection $f_{(u,v)} : \Sigma \to \Sigma$.
 $val(G) = \max_{\ell} \mathbf{E}_{(u,v)\in G}[\mathbf{1}_{f_{(u,v)}(\ell(u))=\ell(v)}]$



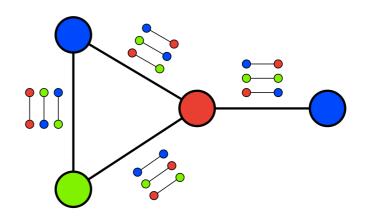
Unique games

(d-regular graph)
$$G$$
, for each edge e ,
bijection $f_{(u,v)} : \Sigma \to \Sigma$.
 $val(G) = \max_{\ell} \mathbf{E}_{(u,v) \in G} [\mathbf{1}_{f_{(u,v)}(\ell(u)) = \ell(v)}]$



Def. $(1 - \eta, \gamma)$ -**UG** (yes): val(G) $\geq 1 - \eta$ (no): val(G) $\leq \gamma$

Merlin: (faithful in yes case) $|\psi\rangle = \sum_{v \in G} |v\rangle |\ell(v)\rangle$

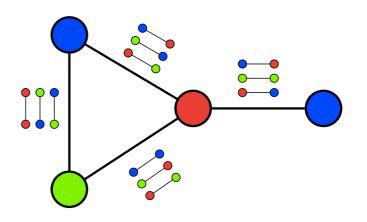


Merlin: (faithful in yes case)

 $|\psi\rangle = \sum_{v \in G} |v\rangle |\ell(v)\rangle$

Arthur: (receives copies of $|\psi\rangle$)

- check equality
- take a random M_r , e.g. (u, v) is an edge in M_r , $\mathcal{T}_r : |u\rangle |\ell\rangle \mapsto |v\rangle |f_{(u,v)}(\ell)\rangle$ compare $\mathcal{T}_r |\psi\rangle$ and $|\psi\rangle$

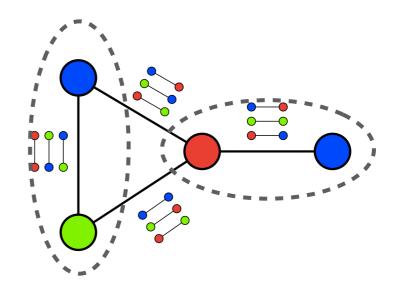


Merlin: (faithful in yes case)

 $|\psi\rangle = \sum_{v \in G} |v\rangle |\ell(v)\rangle$

Arthur: (receives copies of $|\psi\rangle$)

- check equality
- take a random M_r , e.g. (u, v) is an edge in M_r , $\mathcal{T}_r : |u\rangle |\ell\rangle \mapsto |v\rangle |f_{(u,v)}(\ell)\rangle$ compare $\mathcal{T}_r |\psi\rangle$ and $|\psi\rangle$

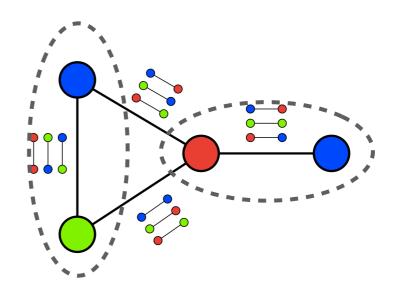


Merlin: (faithful in yes case)

 $|\psi\rangle = \sum_{v \in G} |v\rangle |\ell(v)\rangle$

Arthur: (receives copies of $|\psi\rangle$)

- check equality
- take a random M_r , e.g. (u, v) is an edge in M_r , $\mathcal{T}_r : |u\rangle |\ell\rangle \mapsto |v\rangle |f_{(u,v)}(\ell)\rangle$ compare $\mathcal{T}_r |\psi\rangle$ and $|\psi\rangle$



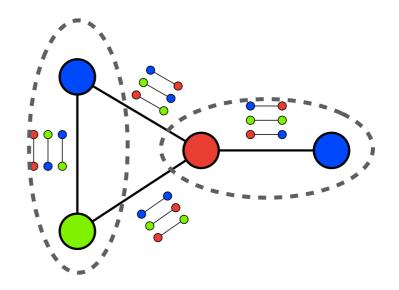
ASSUME $|\psi\rangle$ encodes a valid assignment, then: In the yes case, $\mathcal{T}_r |\psi\rangle \approx |\psi\rangle$; In the no case, $\mathcal{T}_r |\psi\rangle \perp |\psi\rangle$

Merlin: (faithful in yes case)

 $|\psi\rangle = \sum_{v \in G} |v\rangle |\ell(v)\rangle$

Arthur: (receives copies of $|\psi\rangle$)

- check equality
- take a random M_r , e.g. (u, v) is an edge in M_r , $\mathcal{T}_r : |u\rangle |\ell\rangle \mapsto |v\rangle |f_{(u,v)}(\ell)\rangle$ compare $\mathcal{T}_r |\psi\rangle$ and $|\psi\rangle$
- validity test

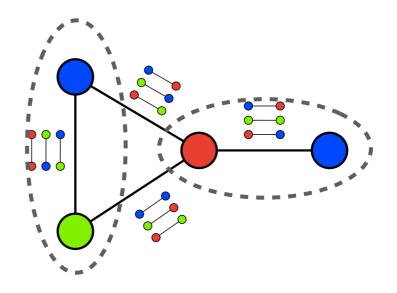


Merlin: (faithful in yes case)

 $|\psi\rangle = \sum_{v \in G} |v\rangle |\ell(v)\rangle$

Arthur: (receives copies of $|\psi\rangle$)

- check equality
- take a random M_r , e.g. (u, v) is an edge in M_r , $\mathcal{T}_r : |u\rangle |\ell\rangle \mapsto |v\rangle |f_{(u,v)}(\ell)\rangle$ compare $\mathcal{T}_r |\psi\rangle$ and $|\psi\rangle$
- validity test



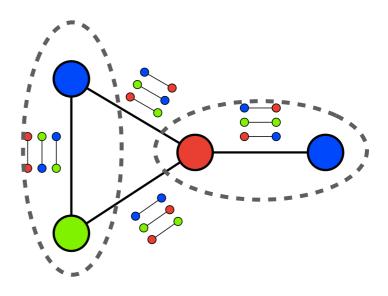
Theorem 2. $UG \in QMA_{log}^+(2)$, with a $\Omega(1)$ gap

Merlin: (faithful in yes case)

 $|\psi\rangle = \sum_{v \in G} |v\rangle |\ell(v)\rangle$

Arthur: (receives copies of $|\psi\rangle$)

- check equality
- take a random M_r , e.g. (u, v) is an edge in M_r , $\mathcal{T}_r : |u\rangle |\ell\rangle \mapsto |v\rangle |f_{(u,v)}(\ell)\rangle$ compare $\mathcal{T}_r |\psi\rangle$ and $|\psi\rangle$
- validity test



Theorem 2. $UG \in QMA_{log}^+(2)$, with a $\Omega(1)$ gap

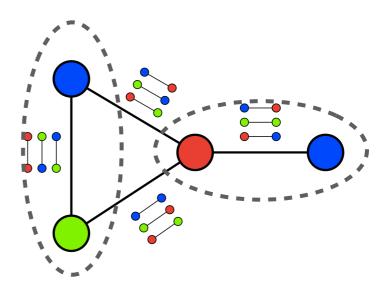
Cor. NP \subseteq QMA⁺_{log}(2), with a $\Omega(1)$ gap

Merlin: (faithful in yes case)

 $|\psi\rangle = \sum_{v \in G} |v\rangle |\ell(v)\rangle$

Arthur: (receives copies of $|\psi\rangle$)

- check equality
- take a random M_r , e.g. (u, v) is an edge in M_r , $\mathcal{T}_r : |u\rangle |\ell\rangle \mapsto |v\rangle |f_{(u,v)}(\ell)\rangle$ compare $\mathcal{T}_r |\psi\rangle$ and $|\psi\rangle$
- validity test



Theorem 2. $UG \in QMA_{log}^+(2)$, with a $\Omega(1)$ gap

Cor.

NP ⊆ QMA⁺_{log}(2), with a Ω(1) gap

as $(1/2,\gamma)$ -UG is NP-hard

Assume: n variables $x_i \in \Sigma$, where Σ is of constant size **Goal:** test if

$$|\psi\rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} |i\rangle |x_i\rangle$$
. (some valid assignment)

Protocol:

• Suppose $|\psi\rangle$ in addition with some $|\psi^C\rangle$ can pass sparsity test, furthermore $\langle \psi | \mu \rangle^2 \approx \frac{1}{|\Sigma|}$. Thus, $|\psi\rangle \approx \frac{1}{\sqrt{|S|}} \sum_{(i,x_i) \in S} |i\rangle |x_i\rangle$.

Protocol:

• Suppose $|\psi\rangle$ in addition with some $|\psi^C\rangle$ can pass sparsity test, furthermore $\langle \psi | \mu \rangle^2 \approx \frac{1}{|\Sigma|}$. Thus, $|\psi\rangle \approx \frac{1}{\sqrt{|S|}} \sum_{(i,x_i) \in S} |i\rangle |x_i\rangle$. Need to make sure all *i*s are present

Protocol:

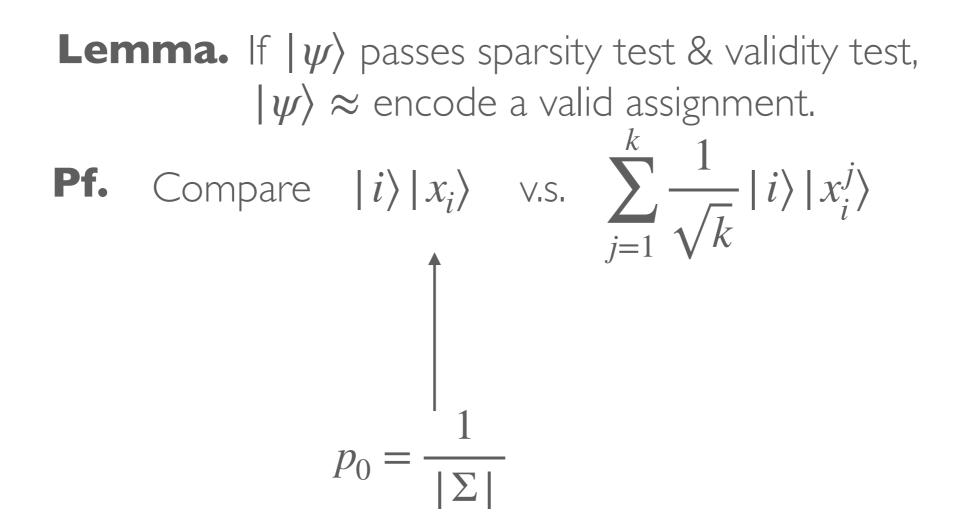
- Suppose $|\psi\rangle$ in addition with some $|\psi^C\rangle$ can pass sparsity test, furthermore $\langle \psi | \mu \rangle^2 \approx \frac{1}{|\Sigma|}$. Thus, $|\psi\rangle \approx \frac{1}{\sqrt{|S|}} \sum_{(i,x_i) \in S} |i\rangle |x_i\rangle$. Need to make sure all *i*s are present
- Apply Fourier transform to the second register, and measure it.

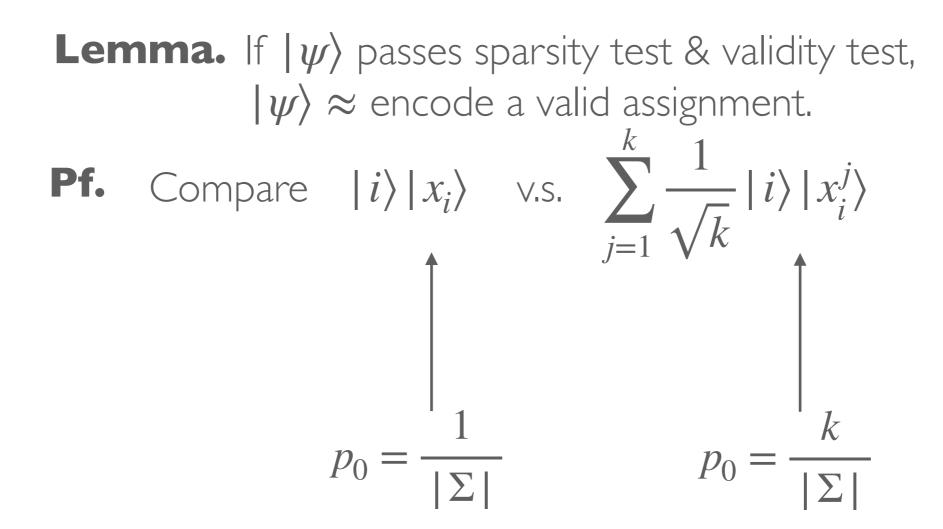
Protocol:

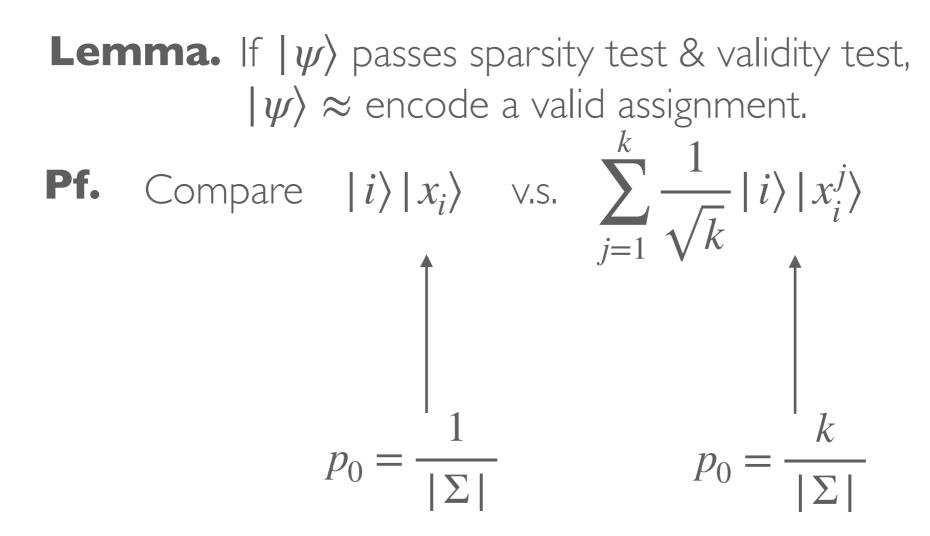
- Suppose $|\psi\rangle$ in addition with some $|\psi^C\rangle$ can pass sparsity test, furthermore $\langle \psi | \mu \rangle^2 \approx \frac{1}{|\Sigma|}$. Thus, $|\psi\rangle \approx \frac{1}{\sqrt{|S|}} \sum_{(i,x_i) \in S} |i\rangle |x_i\rangle$. Need to make sure all *i*s are present
- Apply Fourier transform to the second register, and measure it.

ACCEPT if the probability p_0 of observe 0 $p_0 < \frac{1}{|\Sigma|} + \epsilon$.

Lemma. If $|\psi\rangle$ passes sparsity test & validity test, $|\psi\rangle \approx$ encode a valid assignment. **Pf.** Compare $|i\rangle |x_i\rangle$ v.s. $\sum_{j=1}^{k} \frac{1}{\sqrt{k}} |i\rangle |x_i^j\rangle$







Thus, if $|\psi\rangle$ is far from being valid, then prob. of observing 0 is $\gg 1/|\Sigma|$.

Roadmap: Global protocols for

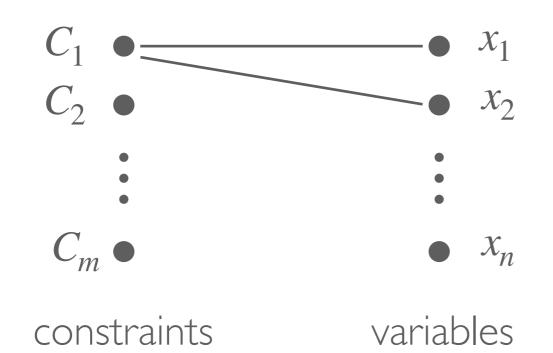
- Small-set expansion problem
- Unique games problem

Constraint satisfaction problem

with a constant gap.

Classical, NP-complete problems

A k-constraint satisfaction problem (CSP):

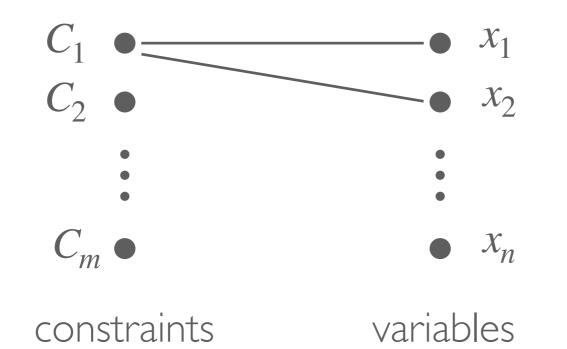


Each constraint $C_i(x_{i_1}, x_{i_2}, \ldots, x_{i_k})$

- depends on k variables
- *arbitrary* predicate
- $x_i \in \Sigma_i$, constant size alphabet

Classical, NP-complete problems

A k-constraint satisfaction problem (CSP):



Question:

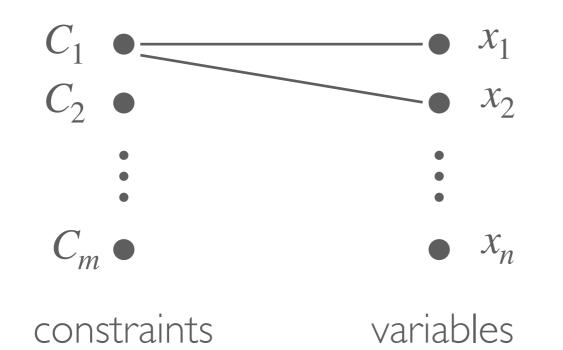
is there assignment that satisfies all constraints?

Each constraint $C_i(x_{i_1}, x_{i_2}, \ldots, x_{i_k})$

- depends on k variables
- *arbitrary* predicate
- $x_i \in \Sigma_i$, constant size alphabet

Classical, NP-complete problems

A k-constraint satisfaction problem (CSP):



Each constraint $C_i(x_{i_1}, x_{i_2}, \dots, x_{i_k})$

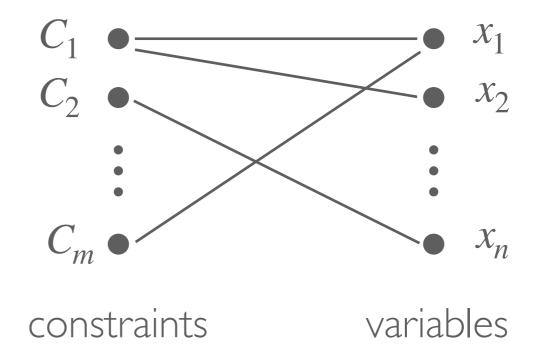
- depends on k variables
- *arbitrary* predicate
- $x_i \in \Sigma_i$, constant size alphabet

Question:

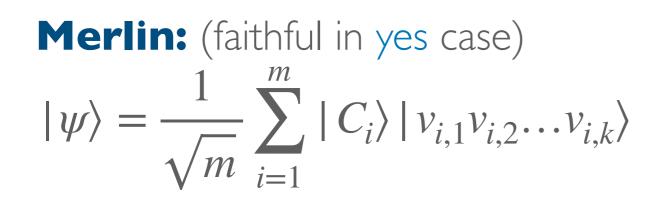
is there assignment that satisfies all constraints? distinguish whether $1 \text{ or } \leq \epsilon$ **PCP theorem.**

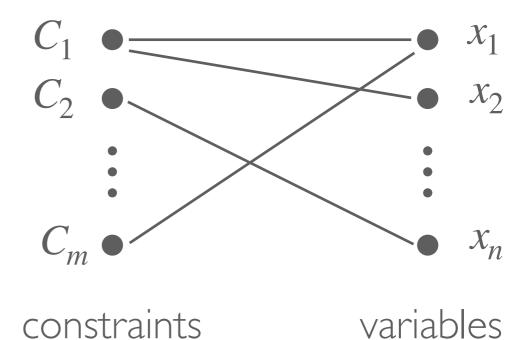
NP-complete k-CSP

A general k-CSP (PCP theorem) PCP 1 v.s. ϵ NP-hard

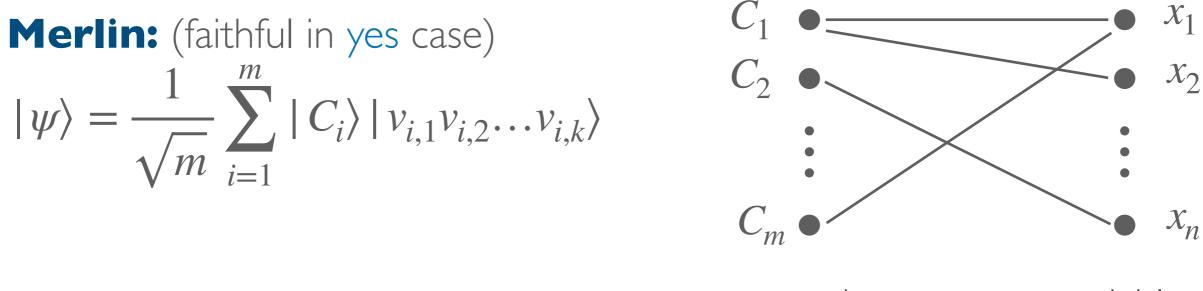


$QMA^+(2)$ protocol for k-CSP





$QMA^+(2)$ protocol for k-CSP

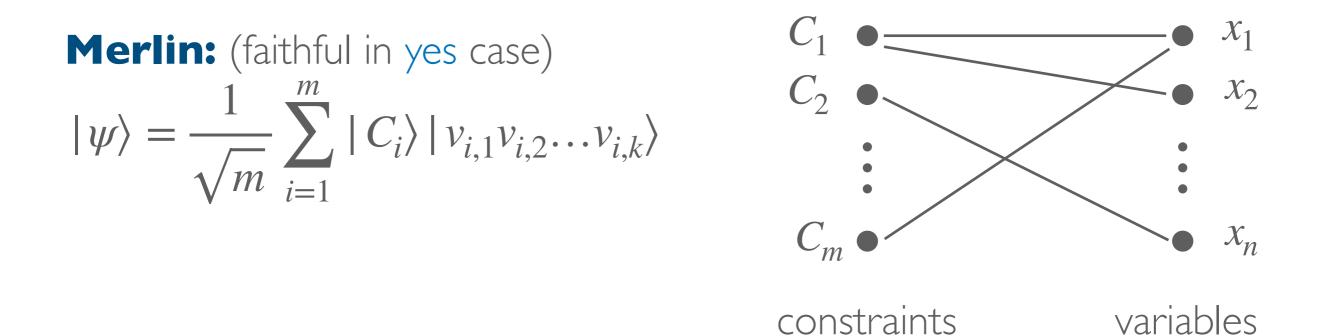


constraints

variables

First, it's easy to verify the constraints, $|C_i\rangle |v_1v_2...v_k\rangle |0\rangle \mapsto |C_i\rangle |v_1v_2...v_k\rangle |C_i(v_1v_2...v_k)\rangle.$

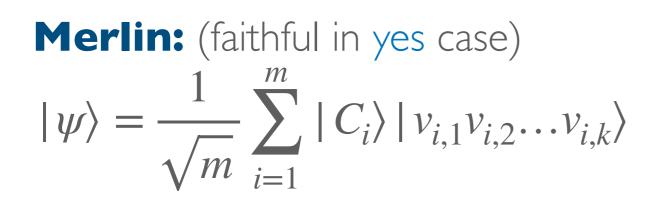
$QMA^+(2)$ protocol for k-CSP

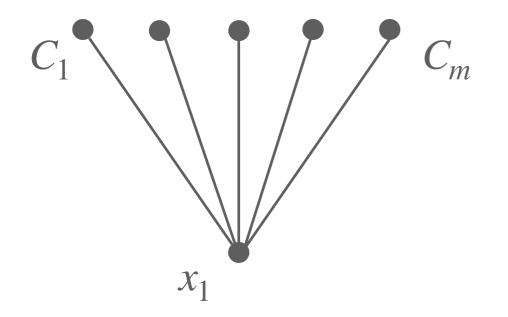


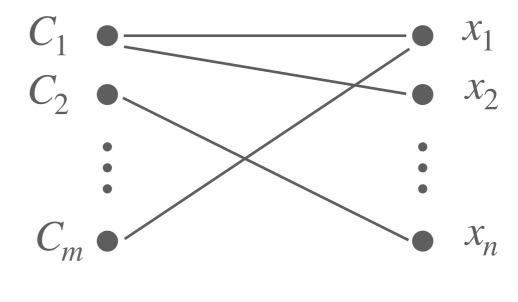
```
First, it's easy to verify the constraints,

|C_i\rangle |v_1v_2...v_k\rangle |0\rangle \mapsto |C_i\rangle |v_1v_2...v_k\rangle |C_i(v_1v_2...v_k)\rangle.
```

Consistency?

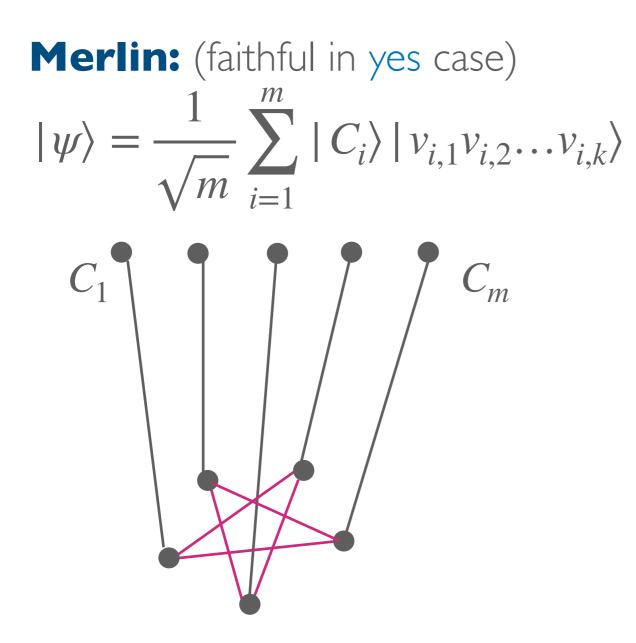


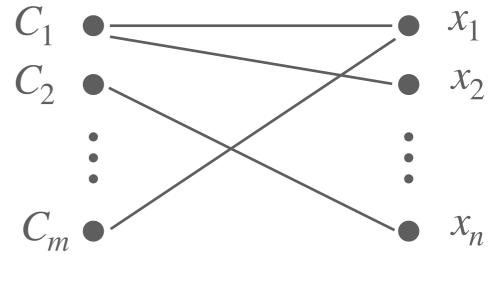




constraints

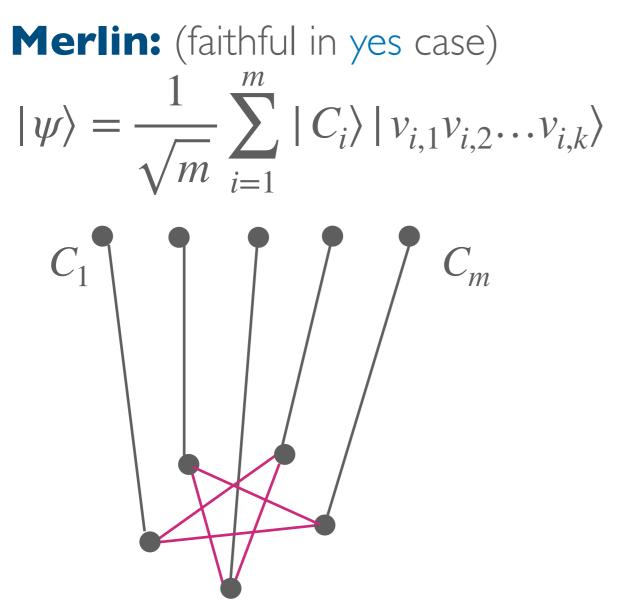
variables

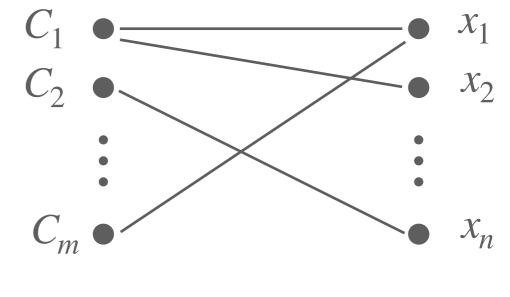




constraints

variables

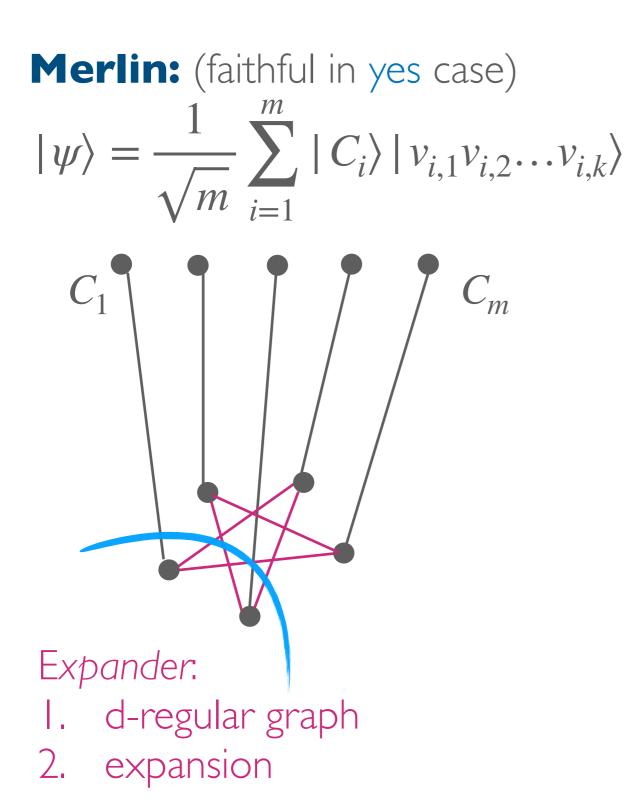


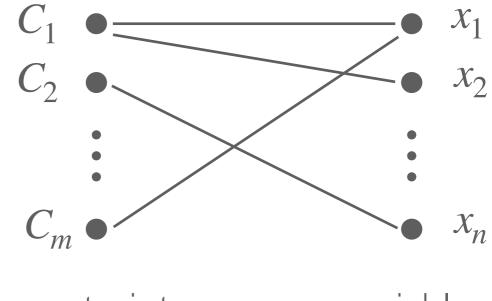


constraints

variables

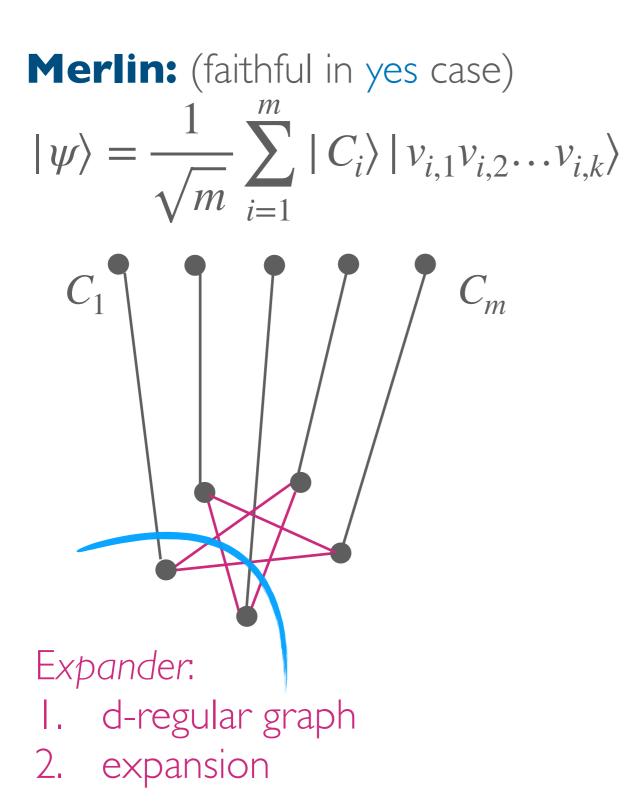
Expander.I. d-regular graph2. expansion

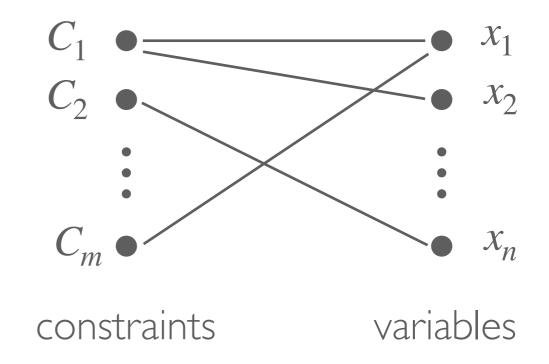




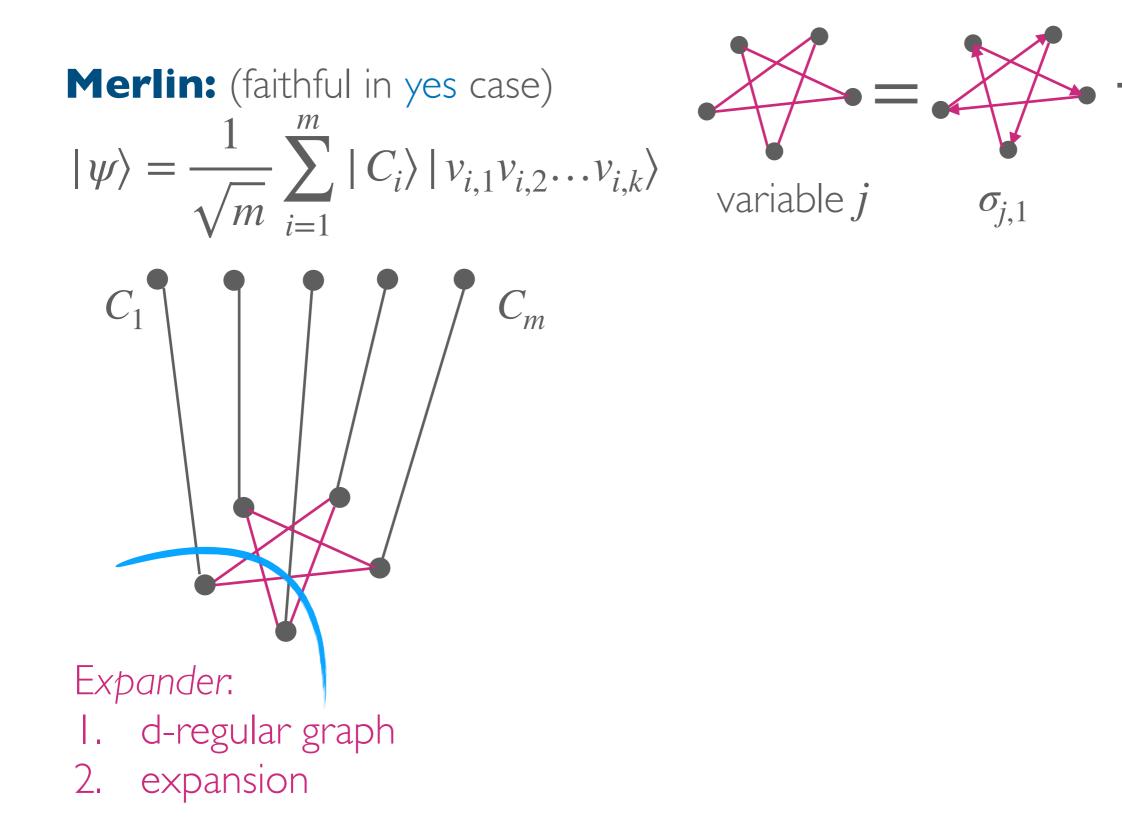
constraints

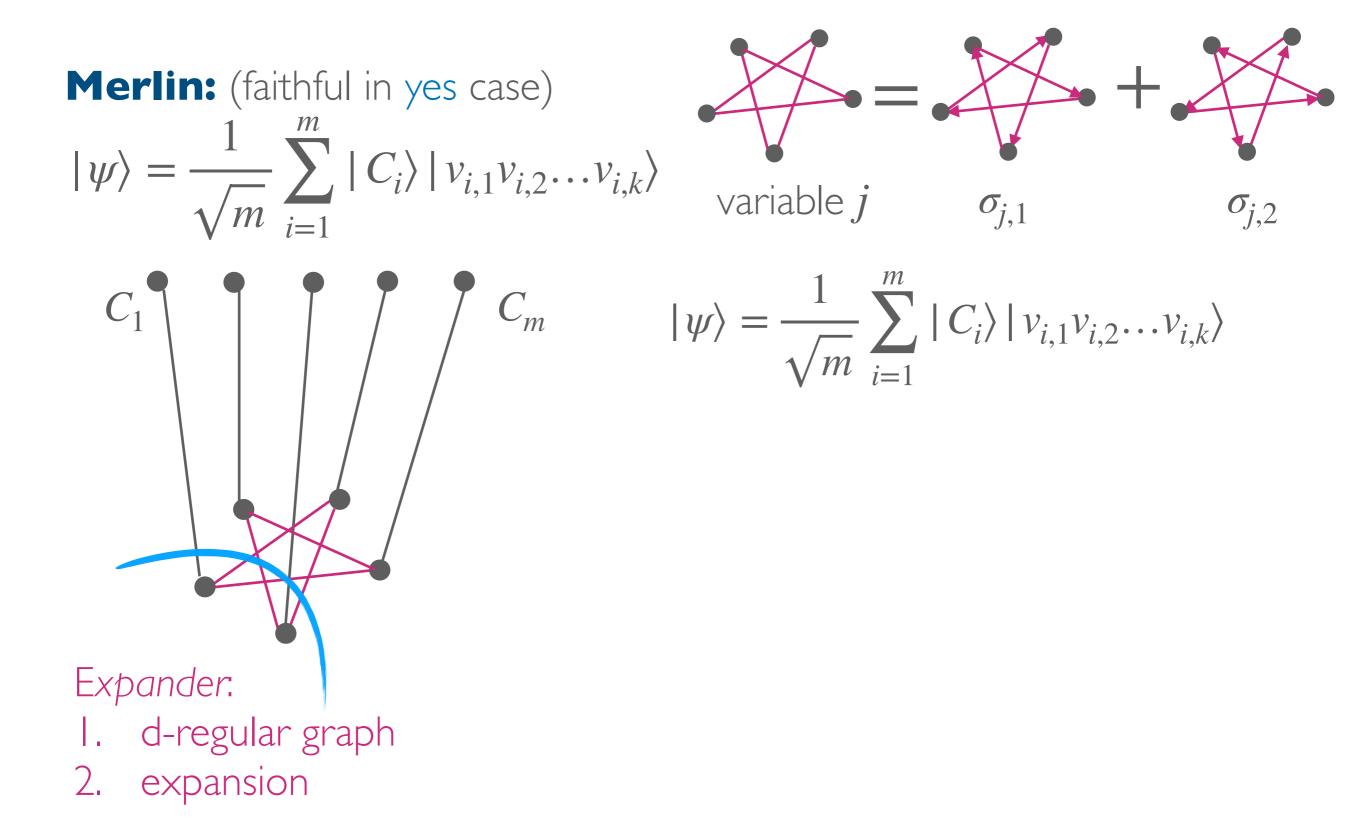
variables

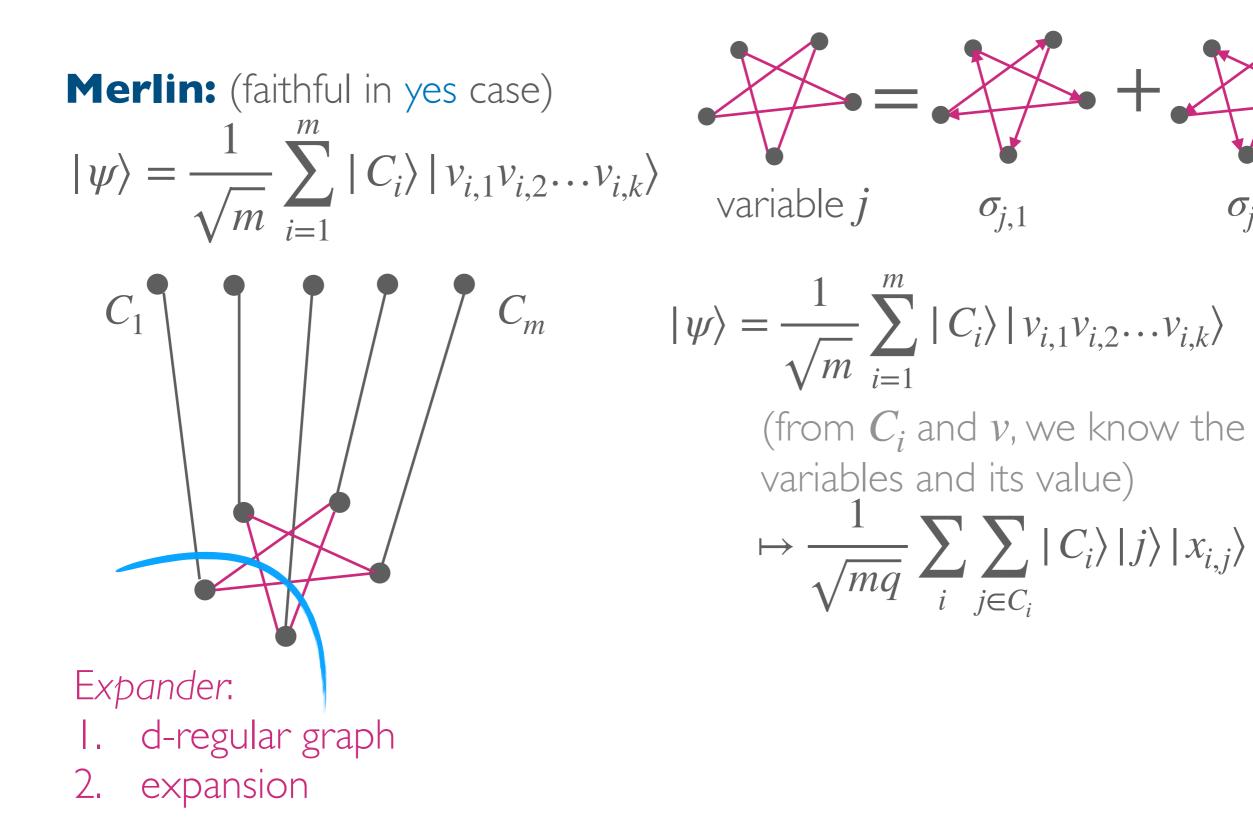


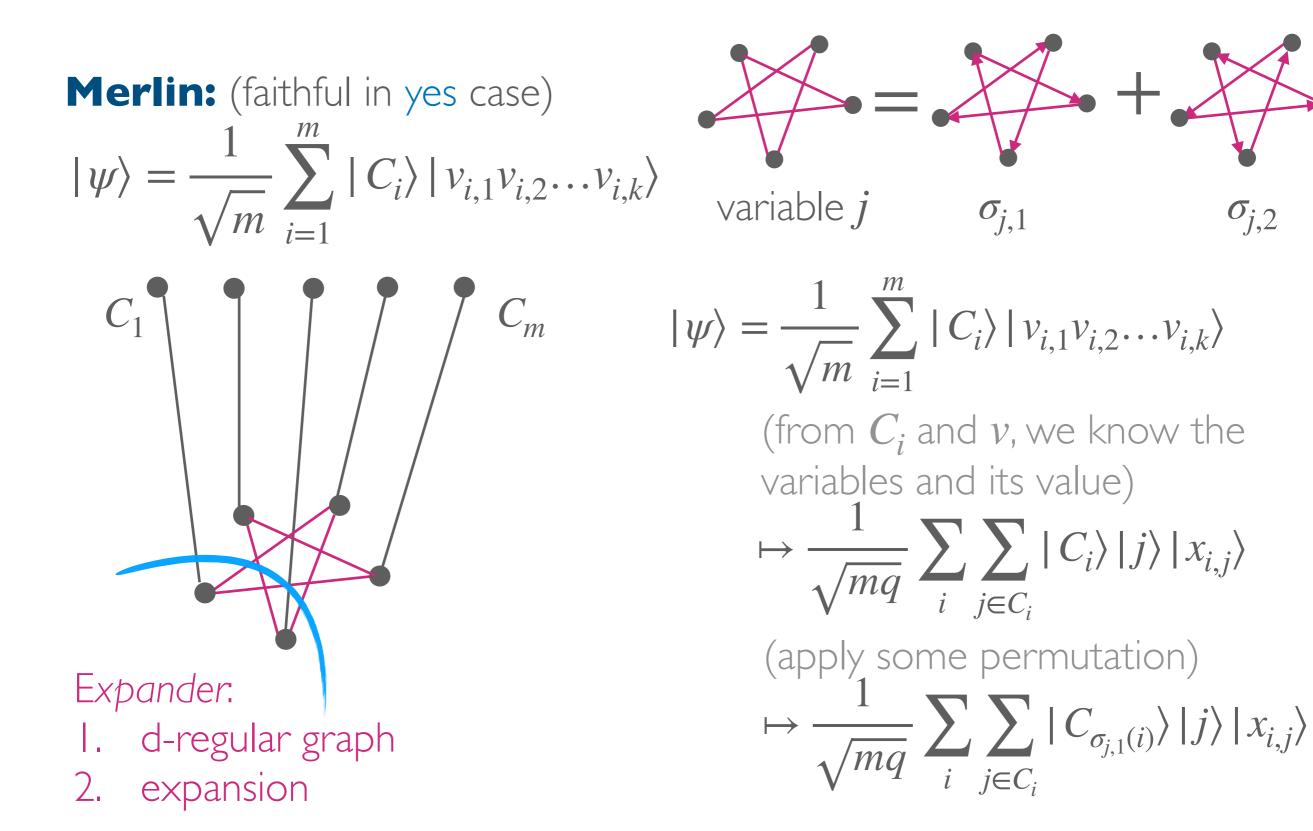


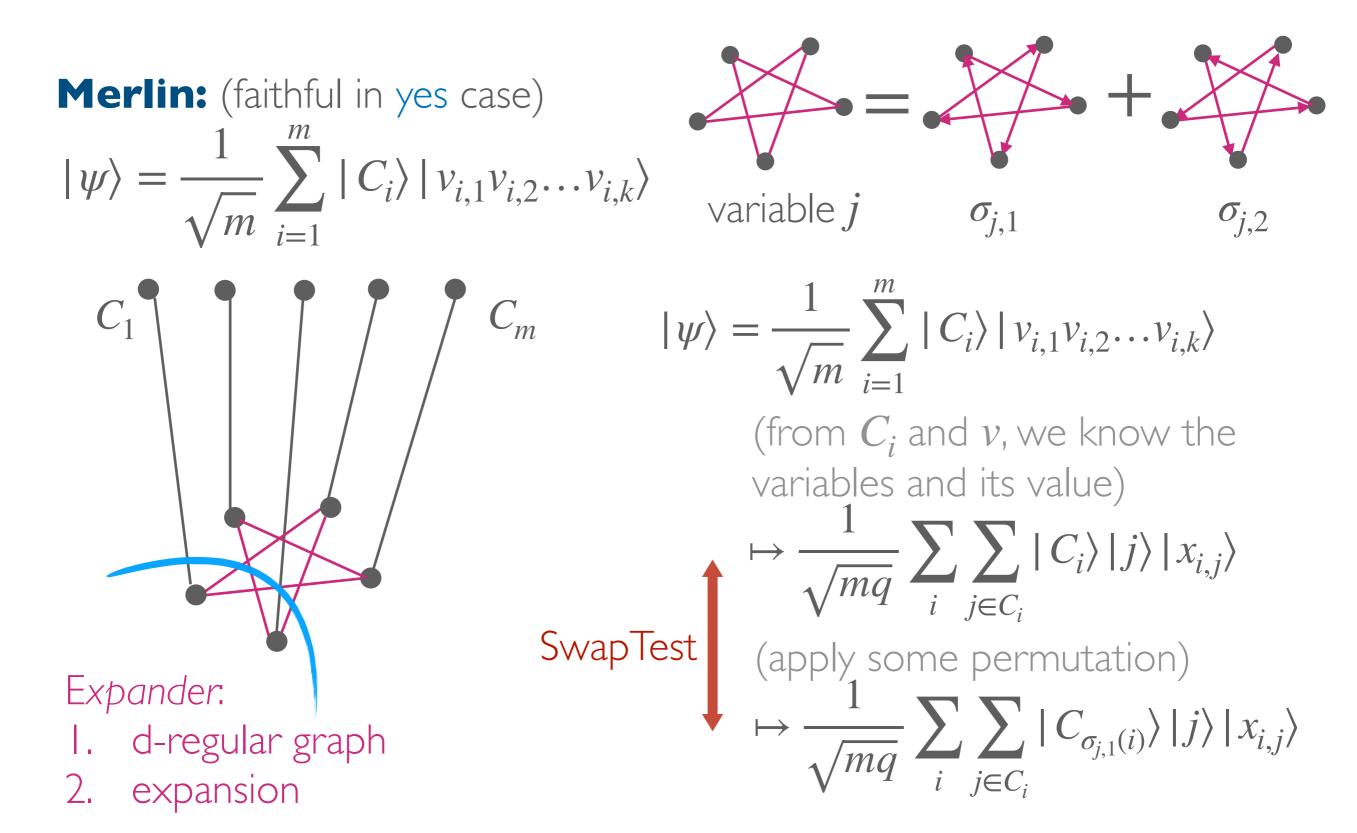
Expansion property ensures in the soundness case, a const. fraction of constraints are not satisfiable.



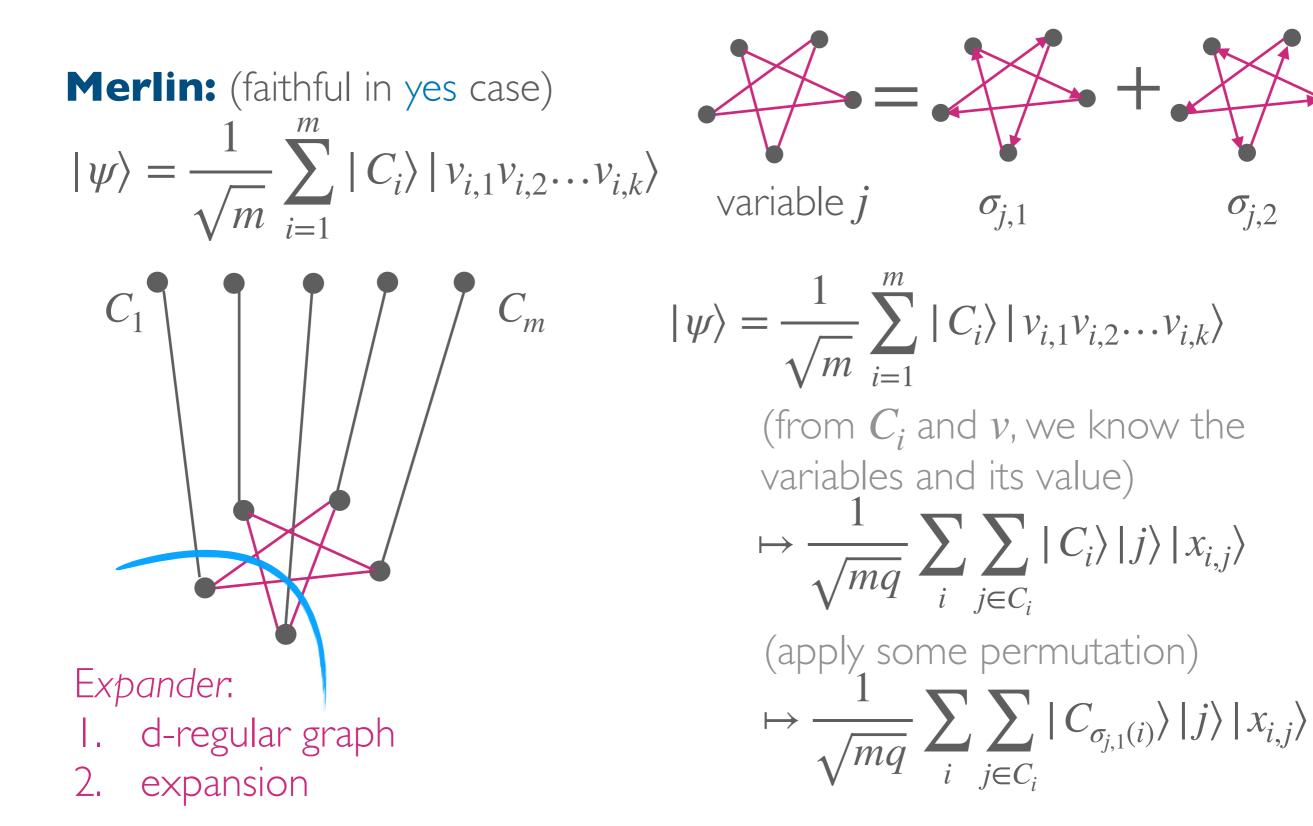




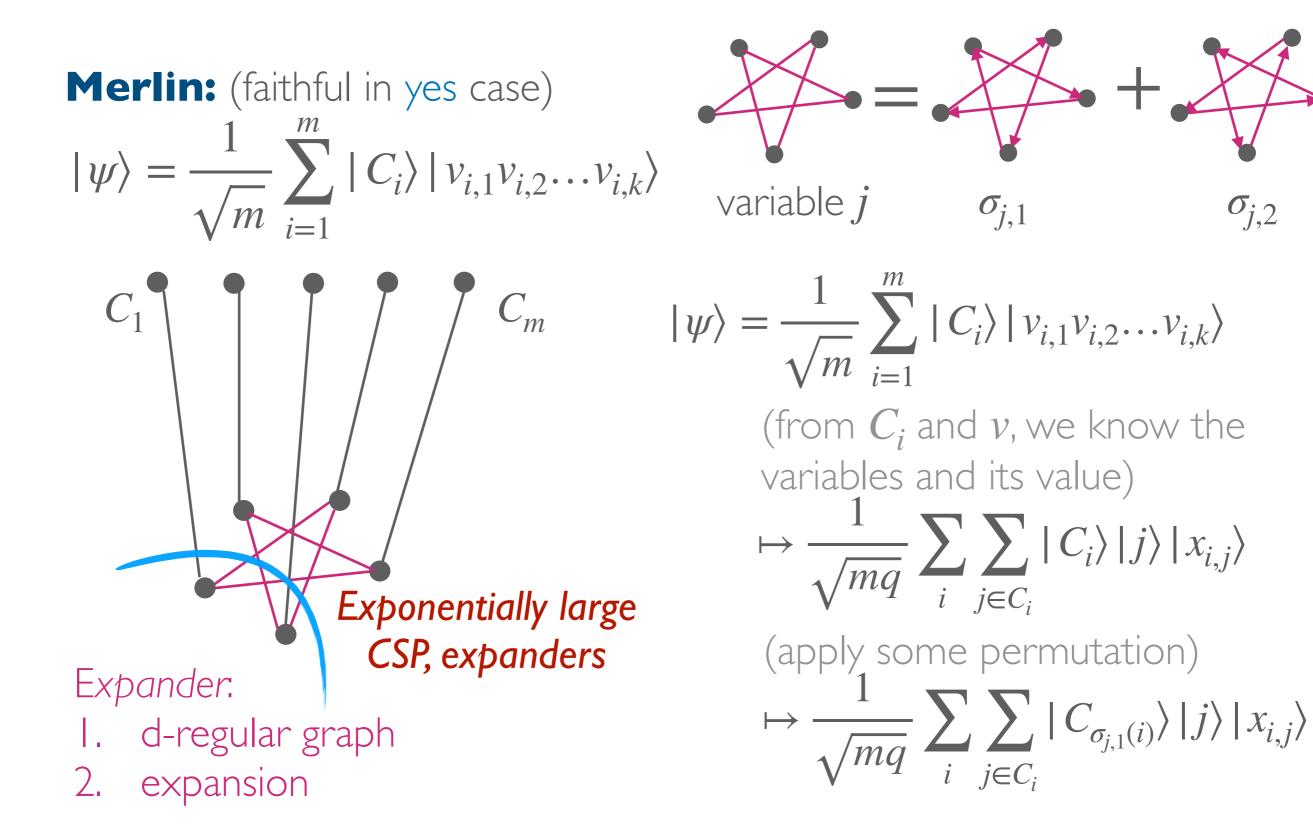




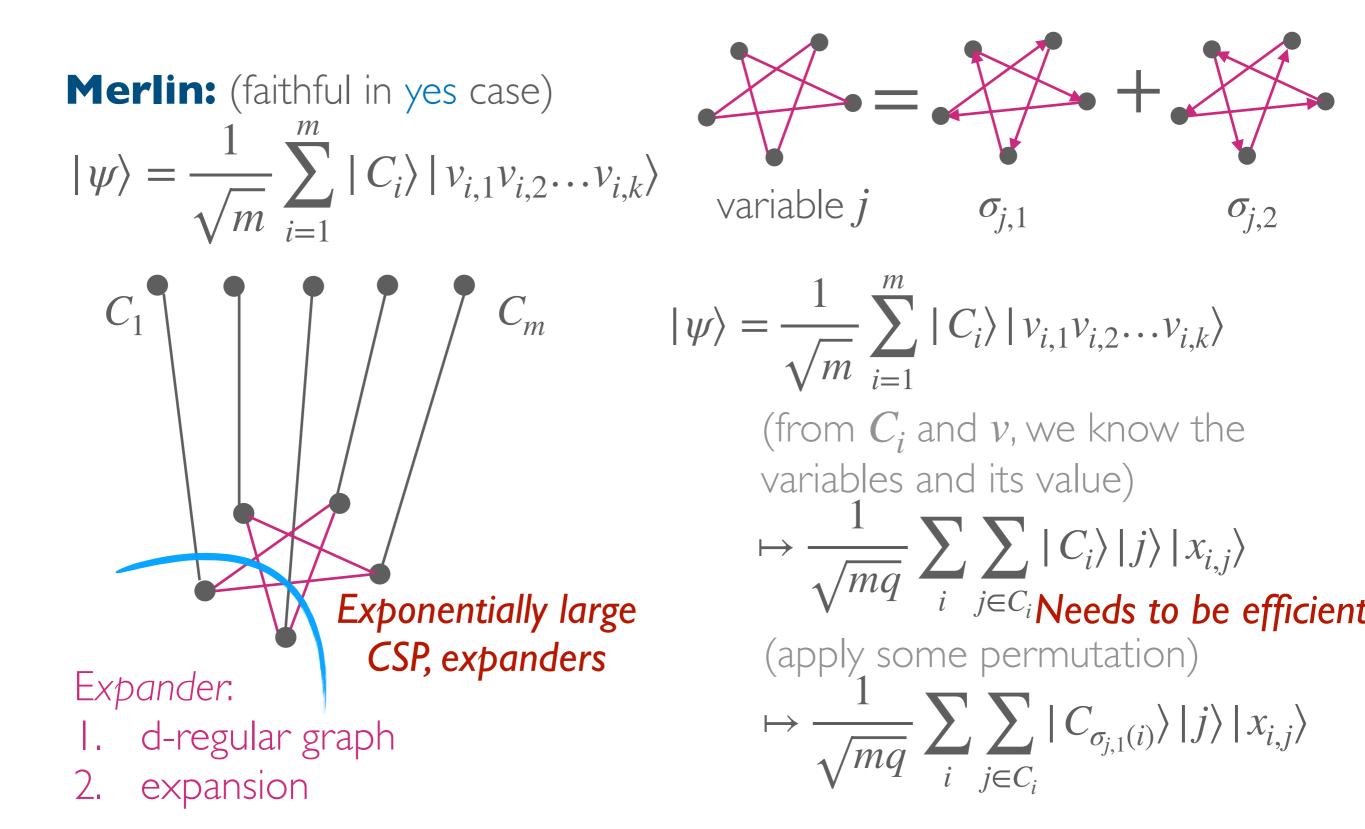
What about NEXP?



What about NEXP?



What about NEXP?



Theorem. NEXP \subseteq QMA⁺(2)

Theorem. NEXP \subseteq QMA⁺(2) \subseteq NEXP.

Theorem. NEXP \subseteq QMA⁺(2) \subseteq NEXP.

Thank you!