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I have broad research interests in theoretical computer science. I am particularly passion-
ate about computational complexity theory for its combination of mathematical depth,
extensive and surprising connections to other disciplines, and broad relevance to real-world
computing. My work has focused on complexity theory and analytic aspects of Boolean
functions. In this research statement, I will present key highlights of my doctoral and
postdoctoral work, including the following research directions.

(i) The relative power of quantum versus classical computing in the query, communica-
tion, and proof models. Among my contributions is obtaining the largest possible
separation of quantum versus classical computing in the extensively studied query
model (also called the blackbox model).

(ii) Analytic properties of Boolean functions and their applications to query complexity,
communication complexity, and learning theory. A key contribution of my doctoral
work is the determination of the threshold degree of constant-depth circuits, which
resolves a 50-year-old question from Minsky and Papert’s seminar work on neural
networks.

(iii) Interactive coding, a vast generalization of classical error correction to the interactive
setting. My work here has produced optimal error-correcting codes for interactive
communication in the adversarial model with substitutions, insertions, and deletions.

In the concluding section of this document, I will describe my vision for future work.

1 Background

Communication complexity. The classical model of two-party communication features
two geographically separated parties, Alice and Bob, who have private inputs x and y,
respectively, and need to communicate back and forth to compute a given function f(x, y).
This model can be viewed as a far-reaching generalization of classical information theory,
in the sense that information theory studies the one-way transmission of information as
opposed to interactive communication. Analogous to Shannon’s noiseless coding theorem
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and capacity theorem, the natural questions here are: what is the minimum communication
cost for Alice and Bob to compute f , and how does one handle noise if it is present?

Communication complexity theory is of great intrinsic importance because communi-
cation is a key resource in computing. Moreover, communication complexity is a powerful
tool in studying various other computational models because virtually any computational
process involves information flow among two or more components. Indeed, there is a vast
body of research applying communication complexity to study computational phenomena
as diverse as circuits, streaming algorithms, and computational learning.

Query complexity. In the query model, the task is to evaluate a given function f on an
unknown n-bit input x. To access the input, we query an index i of our choice and receive
xi. The goal is to minimize the worst-case number of queries by choosing the query indices
strategically.

Even though query complexity is among the simplest computational models, it remains
the focus of a large body of research. This is because the query model captures the hardness
of many important problems. To illustrate, the vast majority of known quantum algorithms,
including Grover’s search algorithm and Shor’s period finding algorithm, are captured by
the query model. In addition, query complexity sheds light on more sophisticated models.
For example, it is well known that the query model is closely related to Turing machines with
oracles. As another example, there are a variety of lifting theorems that make it possible
to instantly transfer lower bounds for the query model to the vastly more powerful model
of communication complexity. This lifting approach has recently enabled the resolution of
several important open problems.

Proof systems. The notion of proof is central to complexity theory. For example, the
class NP (nondeterministic polynomial time) has the following proof interpretation. For
any language L ∈ NP, there is a deterministic polynomial-time verifier such that: (1) given
any input x ∈ L, there is a polynomial-size proof π such that the verifier accepts the pair
(x, π) (the completeness requirement); and (2) given any input x 6∈ L, the verifier rejects
the pair (x, π) for every proof π (the soundness requirement). The Merlin-Arthur proof
system generalizes the above notion by allowing the verifier to be probabilistic. Roughly
speaking, the completeness requirement now states that the verifier should accept every
input x ∈ L with high probability (say, at least 2/3); whereas the soundness requirement
states that the verifier should reject every input x /∈ L with high probability (say, at least
2/3). Quantum computation is inherently probabilistic, and therefore the Merlin-Arthur
model generalizes naturally to quantum computation.



2 Quantum versus Classical Computing

2.1 Quantum Supremacy in Query and Communication Models

Quantum query complexity has been extensively studied and can be justly considered to be
among the biggest achievements of quantum computing to date. Of particular prominence
in this line of research are results demonstrating the superiority of quantum algorithms over
their classical counterparts. I am particularly interested in the bounded-error regime, where
the query algorithm is allowed to err with a small constant probability. In groundbreaking
work, Simon [41] exhibited a partial Boolean function whose bounded-error quantum query
complexity is exponentially smaller than its randomized (i.e., classical) query complexity.
This raises the question: what is the largest possible separation between quantum and
randomized query complexity? This question was first explicitly stated in 2002 by Buhrman
et al. [12], and has since been popularized by Aaronson and Ambainis [2].

We settled this 18-year-old problem completely in [38]. Specifically, we proved that for
any constant k, there is a partial function f with quantum query complexity at most k and
randomized query complexity Ω̃(n1−1/2k). This gives a quantum-classical separation of O(1)
versus Ω(n1−ε) for every ε > 0, which is a polynomial improvement on the best previous
separation of O(1) versus Ω(n2/3−ε) due to Tal [42]. Our k versus Ω̃(n1−1/2k) separation
is optimal due to Aaronson and Ambainis’ result [2] that any k-query quantum algorithm
can be simulated by O(n1−1/2k) randomized classical queries, for an arbitrary constant k.
By the well-known framework of “cheatsheets” due to Aaronson et al. [4], our result also
implies a cubic separation between quantum and randomized query complexity for total
functions. This separation is the largest known and has been conjectured to be tight by
other researchers [5]. As a technical centerpiece of our work [38], we prove a tight bound
on the `1 norm of any given level of the Fourier spectrum of decision trees. This bound on
Fourier weight settles a conjecture of Tal [42] and is of substantial interest in its own right,
considering the central role of the Fourier spectrum in many recent breakthroughs in the
area [14, 15, 34].

The analogous question has been extensively studied in the communication model [33,
35, 20, 36]. Via query-to-communication lifting, we obtain near-optimal separations for
quantum versus randomized communication complexity. In particular, we obtain anO(log n)
versus Ω(n1−ε) separation for the quantum versus randomized communication complexity
of partial functions, for any ε > 0. Our separation is essentially optimal and a polynomial
improvement on previous work.

2.2 Quantum Proof Systems with Exponentially Short Proofs

The notion of proof plays a central role in classical complexity theory. The quantum Merlin-
Arthur proof system (QMA) is one of the most basic quantum proof systems and represents
the quantum analog of NP. In a QMA proof system associated with some language L,
the prover provides a quantum proof for any input x that consists of polynomially many



quantum bits, and a quantum polynomial-time verifier checks whether the proof certifies x ∈
L. Due to the mysterious features of quantum mechanics, new and interesting phenomena
manifest themselves. For example, the number of provers does not play a role classically (as
long as the proof length is restricted to polynomial size), and the resulting complexity class
is NP. However, in quantum computation, this is probably not the case—there is evidence
that two unentangled quantum provers may have more power than one prover [21]. To
make this distinction, the proof system with two unentangled provers is denoted QMA(2).

Since its introduction in 2003 [30], there has been little progress in understanding
QMA(2) as a complexity class, despite substantial efforts over the past two decades, moti-
vated by complexity theory and the connection to polynomial optimization problems and
quantum entanglement [3, 10, 7, 19, 16, 22]. It remains a major open problem to even
slightly improve either side of the trivial bounds (i) that QMA ⊆ QMA(2), since the veri-
fier can always ignore one of the two provers; and (ii) QMA(2) ⊆ NEXP, where the latter
denotes the complexity class of nondeterministic exponential time, since a NEXP algorithm
can guess all the amplitudes of a quantum proof of polynomial size.

In joint work with F. G. Jeronimo, we studied QMA(2) by restricting the provers to
send proofs where the quantum amplitudes are of the same phase. We call this class
QMA+(2). Under this restriction, it turns out that using only logarithmic size quantum
proofs, a QMA+(2) proof system can certify any NP language L with a constant soundness
and completeness gap. In contrast, for the classical NP class, polynomial-size proofs are
necessary. We further strengthen this result and show that QMA+(2) = NEXP. Namely,
with two unentangled proofs of only polynomial size, a quantum polynomial-time verifier will
be able to check whether a given instance is in a NEXP language. Apart from providing a
new characterization of NEXP, our work may shed light on directions towards the problem
of whether QMA(2) = NEXP.

3 The Study of Boolean Functions and Applications

3.1 Sign-Representation of Boolean Functions

Representations of Boolean functions by real polynomials are of great importance in a
variety of contexts, from communication complexity and quantum computing to machine
learning theory. For example, the notion of approximate degree has played an essential role
in quantum query complexity for decades. Threshold degree has an even broader range of
applications, including various models of computational learning. The notion of threshold
degree originates in the pioneering work of Minsky and Papert [31] and is defined, for a
Boolean function f : {0, 1}n → {−1, 1}, as the minimum degree of a real polynomial p that
represents f in sign: f(x) = sgn p(x) for all x.

The threshold degree of polynomial-size constant-depth circuits (AC0) has been the
focus of 50+ years of work. Together with my Ph.D. advisor, we were able to essentially
settle this longstanding problem in [39]. More specifically, we proved that for any ε > 0,



there is an AC0 circuit with threshold degree Ω(n1−ε). This lower bound essentially matches
the trivial upper bound of O(n) and is a polynomial improvement on the best previous lower
bound, Ω(

√
n).We further strengthened this result to handle not only threshold degree but

also sign-rank—a vastly more general notion than threshold degree.
Our results have far-reaching applications in communication complexity and learning

theory. In communication complexity, our results give the strongest known lower bounds
for AC0, showing the optimality of the trivial protocol where Alice sends her entire input
to Bob. Our lower bound holds even if Alice and Bob only need to compute f with an
arbitrary nonzero advantage over random guessing. In learning theory, our results rule
out the possibility of the distribution-free PAC learning of AC0 based on the powerful
dimension complexity paradigm. This framework captures nearly all known algorithmic
results for distribution-free PAC learning.

This work has been invited to appear in a special issue of SIAM Journal of Computing
for STOC 2019.

3.2 Random Restrictions of Boolean Functions

For any Boolean function f : {−1, 1}n → {0, 1}, the individual influence of the ith coor-
dinate xi is the probability of flipping the value of f when flipping xi on a random input
x ∈ {−1, 1}n. This notion of influences was first introduced by Ben-Or and Linial [9] in
the context of collective coin flipping. It coincides with the “Banzaf index” studied in game
theory. The class of Boolean functions with individual influences bounded by τ = o(1) is a
central topic in the analysis of Boolean functions. There are several motivations to study
such functions. First, they arise naturally in social choice theory [27, 28]. For example, in
a voting system of two candidates and n voters, each bit xi represents the individual pref-
erence of each voter between the two candidates. When aggregating the social preference,
it is natural to use a function f where the potential of any given individual to determine
the final outcome is limited. Second, from an algorithmic perspective, suppose that we
have access to the input via a limited number of queries. Then, it is natural to query a
variable when its individual influence is large. This observation has been applied in differ-
ent settings [18, 1]. In computational complexity, for example, distinguishing dictatorship
functions from functions with small individual influences is a key component of proving
optimal NP-hardness for approximation [8, 24, 25, 29].

Let Rp denote the random restrictions of f , where each variable is fixed with proba-
bility p to a random value in {−1, 1}, and is left undetermined (alive) with the comple-
mentary probability 1 − p. Applying a random restriction and studying the properties of
the restricted function turn out to be a very useful technique. This approach has led to
breakthroughs in a variety of areas. For example, it underlies exponential lower bounds in
circuit complexity [23] and the recent dramatic improvements of the sunflower lemma in
combinatorics [6].

In order to gain a deeper understanding of query complexity and block sensitivity, to-



gether with Ronen Eldan and Avi Wigderson, we studied [17] random restrictions of Boolean
functions with small individual influences. We showed that, when the alive probability is
Ω̃((log 1/τ)−1), the restricted function remains nonconstant with overwhelming probability.
This parameter is the best possible. The related problem was first formulated by Friedgut
and Kalai as the “it ain’t over till it’s over” conjecture in the context of social choice theory.
The original conjecture was solved by Mossel, O’Donnell, and Oleszkiewicz [32]. Their ap-
proach falls short of obtaining the optimal parameters. Our result has applications in social
choice theory and complexity theory. In complexity theory, our result implies, among other
things, that a random input will have block sensitivity Ω̃(log 1/τ) with overwhelming proba-
bility. It is worth mentioning that, by the well-known Kahn-Kalai-Linial inequality [26], the
average block sensitivity is at least Ω(log 1/τ). Our result establishes the following stronger
statement: not only is the average block sensitivity large, but in fact essentially all inputs
have large block sensitivity.

4 Interactive Coding

Noise is omnipresent in communication. In the classical setting of one-way communication,
the study of information transmission under noise forms a large part of classical information
theory. In pioneering work, Schulman [37] considered noise in the setting of interactive
communication. This area of research, called interactive coding, is a fascinating and highly
active discipline at the crossroads of information theory and communication complexity.
More concretely, consider the following scenario. Alice and Bob would like to execute a
communication protocol π defined for a noiseless environment. However, the communication
channel is controlled by an adversary who can corrupt any fraction ρ of symbols transmitted
through the channel. The question is, can Alice and Bob use some interactive analogue
of error-correcting codes to ensure that they are both able to recover, from their noisy
communication, the transcript that π would have produced without noise? A far-reaching
generalization of this model, proposed by Braverman et al. [11], allows arbitrary corruptions:
insertions, deletions, and substitutions. For any constant ε > 0, the authors of [11] showed
how to faithfully simulate any protocol in this generalized model with corruption rate up
to 1

18 − ε, using a constant-size alphabet and a constant-factor overhead in communication.
Braverman et al. posed the following natural and fundamental question: what is the

maximum corruption rate that can be tolerated in this generalized model of substitutions,
insertions, and deletions? We gave a complete answer to this question in [40]. We showed
that for any ε > 0, there is an interactive coding scheme that uses a constant-size alphabet
and achieves noise tolerance 1

4 − ε, at the expense of a constant-factor overhead in com-
munication complexity compared to π. This rate is easily seen to be optimal, even in the
presence of substitution errors alone.



5 Future Directions

Theoretical computer science is a young and exceptionally active discipline. I look forward
to pursuing my current areas of expertise as well as branching out into new areas of theo-
retical computer science. In what follows, I mention several of my favorite problems that
are closely related to my past research.

Sign-representation of shallow circuits

Our aforementioned threshold degree result for AC0 uses circuits whose depth is a large
constant. If we turn to extremely shallow circuits, there are many unsettled problems.
The only case we understand fully is the trivial case of depth-1 circuits, which are just the
AND and OR functions. Analyzing the sign-representation and pointwise approximation
of circuits of depth as small as 2 is already very challenging—and very rewarding from
the standpoint of applications. For example, a major open problem is to determine the
quantum query complexity of triangle detection. As a function, triangle detection is easily
computable by a depth-2 circuit. Establishing a tight approximate degree lower bound is
currently the most promising approach to this fundamental problem.

Quantum query/communication complexity

In the query complexity world, our understanding is now more or less complete: we know
that the quantum and randomized query complexity can be arbitrarily separated for partial
functions. For total functions, my Ph.D. thesis gives a cubic separation, whereas Aaronson
et al. [5] prove that any separation is at most quartic. Closing the gap for total functions
is the main unresolved question in this line of work. In the communication world, things
are more open, especially for total functions. It is a major open problem to decide if
quantum protocols can be super-polynomially more efficient than randomized protocols
for total functions. There are several reasons why this problem is so challenging. First,
the lifting technique does not apply since quantum and randomized query complexity are
polynomially related. Moreover, many canonical lower bound techniques for randomized
communication complexity (e.g., approximate rank and the discrepancy method) also lower
bound quantum communication complexity.

The discrepancy between the exponential and polynomial quantum speedups for partial
and total functions begs for a deeper understanding that would allow us to interpolate
between these phenomena. A folklore conjecture is that for any q-query quantum algorithm
Q, there is a qO(1)-query classical algorithm A that approximates Q in the `2 sense. More
concretely, for all but a small fraction of the inputs x, A(x) approximates E[Q(x)] within
a tiny constant additive error. This conjecture generalizes polynomial quantum speedups
for total functions and explains why, to achieve exponential speedups for a partial function
f , the domain of f must be restricted to a subset of the Boolean cube so structured that
either f−1(0) or f−1(1) has only o(1) measure over the uniform distribution. Aaronson



and Ambainis reduced this conjecture to a purely analytical problem. The conjecture
states that for any polynomial P of degree d, there is a variable whose influence is at least
(Var[f ]/d)O(1) [1].

Two-party communication complexity

Analogous to the structural complexity theory of Turing machines, two-party communica-
tion has its own complexity classes: P, BPP, NP, PH. A large number of questions regarding
the relationships among these complexity classes remain open. For example, in the Turing
machine world, we know that BPP lies within the second level of PH, and it is conjectured
to be equal to P. In the communication world, BPP is also contained in the second level
of PH, but the conjecture is that BPP 6⊆ PNP. Recently, Chattopadhyay et al. [13] showed
that BPP 6⊆ PGT, where GT is the greater-than function. An ambitious open problem is
to prove that BPP 6⊆ PNP, which would give a highly accurate placement of BPP in the
polynomial hierarchy. Looking out further, if we consider higher levels of the polynomial
hierarchy, we reach the frontier of research in communication complexity. A central and
notoriously hard problem in communication complexity is to exhibit functions that are not
contained in PH. Currently, it remains open even to prove explicit lower bounds against
AM, a subclass of PH.
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