
1

Optimal Interactive Coding for Insertions,
Deletions, and Substitutions

Alexander A. Sherstov and Pei Wu

Abstract—Interactive coding, pioneered by Schulman
(FOCS ’92, STOC ’93), is concerned with making communication
protocols resilient to adversarial noise. The canonical model
allows the adversary to alter a small constant fraction of
symbols, chosen at the adversary’s discretion, as they pass
through the communication channel. Braverman, Gelles, Mao,
and Ostrovsky (2015) proposed a far-reaching generalization of
this model, whereby the adversary can additionally manipulate
the channel by removing and inserting symbols. For any ε > 0,
they showed how to faithfully simulate any protocol in this
model with corruption rate up to 1/18− ε, using a constant-size
alphabet and a constant-factor overhead in communication.

We give an optimal simulation of any protocol in this
generalized model of substitutions, insertions, and deletions,
tolerating a corruption rate up to 1/4 − ε while keeping the
alphabet to a constant size and the communication overhead to
a constant factor. This resolves a question due to Gelles (2015).
Our corruption tolerance matches an impossibility result for
corruption rate 1/4 which holds even for substitutions alone
(Braverman and Rao, STOC ’11).

Index Terms—Interactive coding, insertions and deletions, edit
distance, tree codes, communication complexity.

I. INTRODUCTION

CONSIDER the classical problem of transmitting a mes-
sage over an unreliable channel. In its most general

formulation, the problem features an omniscient and computa-
tionally unbounded adversary who controls the communication
channel and can alter a small constant fraction of symbols that
pass through the channel. The choice of symbols to corrupt is
up to the adversary; the only guarantee is an a priori bound on
the fraction of altered symbols, called the corruption rate. The
sender’s objective is to encode the message using a somewhat
longer string so as to always allow the receiver to recover
the original message. This problem is the subject matter of
coding theory and has been extensively studied. In particular,
for any constant ε > 0, it is known [16] how to encode an n-bit
message using a string of O(n) symbols from a constant-size
alphabet such that the receiving party will recover the original
message whenever the fraction of corrupted symbols is at most
1
2−ε. In seminal work, Schulman [20], [21], [22] considered a
generalization of this problem to the interactive setting. Here,
two parties Alice and Bob communicate back and forth ac-
cording to a communication protocol agreed upon in advance.

A. A. Sherstov and P. Wu are with the Department of Computer Science,
University of California at Los Angeles, Los Angeles, CA 90095 USA (email:
sherstov@cs.ucla.edu; pwu@cs.ucla.edu).

Manuscript received February 1, 2018; revised February 27, 2019. The
first author was supported in part by NSF CAREER award CCF-1149018
and an Alfred P. Sloan Foundation Research Fellowship. The second author
was supported in part by NSF CAREER award CCF-1149018. An extended
abstract of this paper appeared in Proceedings of the Fifty-Eighth IEEE Annual
Symposium on Foundations of Computer Science (FOCS), pp. 240–251, 2017.

Alice and Bob privately hold inputs X and Y, respectively,
which dictate their behavior throughout the communication
protocol. As before, the communication channel is controlled
by an adversary who can change a small constant fraction
of symbols as they transit through the channel. The goal is to
overcome these corruptions by cleverly simulating the original
protocol with some redundant communication, as follows. The
simulation leaves Alice and Bob with a record of symbols
exchanged between them, where Alice’s record will generally
disagree with Bob’s due to interference by the adversary.
Nevertheless, they each need to be able to determine, with no
further communication, the sequence of symbols that would
have been exchanged in the original protocol on the inputs X
and Y in question. Ideally, Alice and Bob’s simulation should
use an alphabet of constant size and have communication cost
within a constant factor of the original protocol.

A naı̈ve solution to Schulman’s problem is for Alice and
Bob to encode their individual messages with an error-
correcting code developed for the noninteractive setting. This
approach fails spectacularly because the adversary is only
restricted by the total number of corruptions rather than the
number of corruptions on a per-message basis. In particular,
the adversary may choose a specific message from Alice to
Bob and corrupt all symbols in it. As a result, the naı̈ve solu-
tion cannot tolerate any corruption rate beyond 1

m , where m
is the total number of messages. Remarkably, Schulman [22]
was able to show how to simulate any communication protocol
with corruption rate up to 1

240 , using a constant-size alphabet
and a constant-factor overhead in communication. Interactive
coding has since evolved into a highly active research area
with a vast literature on virtually every aspect of the prob-
lem, e.g., [19], [6], [11], [2], [8], [17], [13], [4], [3], [12],
[14], [7], [10], [1], from corruption rate to communication
overhead to computational complexity. We refer the reader to
Gelles [9] for an up-to-date survey. Of particular interest to
us is the work of Braverman and Rao [6], who proved that
any communication protocol can be simulated in Schulman’s
model with corruption rate up to 1

4 − ε for any ε > 0,
and established a matching impossibility result for corruption
rate 1

4 . Analogous to Schulman [22], the simulation due to
Braverman and Rao [6] uses a constant-size alphabet and
increases the communication cost only by a constant factor.

In the canonical model discussed above, the adversary
manipulates the communication channel by altering symbols.
This type of manipulation is called a substitution. In a recent
paper, Braverman, Gelles, Mao, and Ostrovsky [5] proposed a
far-reaching generalization of the canonical model, whereby
the adversary can additionally manipulate the channel by
inserting and deleting symbols. As Braverman et al. point

2

out, insertions and deletions are considerably more difficult to
handle than substitutions even in the one-way setting of coding
theory. To borrow their example, Schulman and Zuckerman’s
polynomial-time coding and decoding algorithms [23] for
insertion and deletion errors can tolerate a corruption rate of
roughly 1

100 , in contrast to the corruption rate of 1
2−ε or 1

4−ε
(depending on the alphabet size) achievable in the setting of
substitution errors alone [16]. As their main result, Braverman
et al. [5] prove that any communication protocol can be sim-
ulated in the generalized model with substitutions, insertions,
and deletions as along as the corruption rate does not exceed
1
18 − ε, for an arbitrarily small constant ε > 0. Analogous
to previous work, the simulation of Braverman et al. uses a
constant-size alphabet and increases the communication cost
only by a multiplicative constant.

Braverman et al. [5] and Gelles [9] posed the problem
of determining the highest possible corruption rate that can
be tolerated in the generalized model, and of achieving that
optimal rate for every protocol. We give a detailed solution
to this problem, showing that any protocol can be simulated
with corruption rate up to 1

4 − ε for any ε > 0. Recall that
this corruption tolerance is optimal even in the setting of
substitutions alone.

A. The model

Following previous work, we focus on communication pro-
tocols in canonical form. In such a protocol, the communica-
tion proceeds in rounds. The number of rounds is the same
on all inputs, and each round involves Alice sending a single
symbol to Bob and Bob sending a symbol back to Alice. The
canonical form assumption is without loss of generality since
any protocol can be brought into canonical form at the expense
of doubling its communication cost.

We now describe the model of Braverman et al. [5] in more
detail. Naı̈vely, one may be tempted to give the adversary
the power to delete or insert any symbol at any time. A
moment’s thought reveals that such power rules out any
meaningful computation. Indeed, deleting a single symbol
en route from Alice to Bob will stall the communication,
forcing both parties to wait on each other indefinitely to
send the next symbol. Conversely, inserting a symbol into
the communication channel may result in crosstalk, with both
parties trying to send a symbol at the same time. Braverman
et al. [5] proposed a natural and elegant formalism, to which
we refer as the BGMO model, that avoids these abnormalities.
In their model, deletions and insertions occur in pairs, with
every deletion immediately followed by an insertion. In other
words, the BGMO model gives the adversary the capability
to intercept any symbol σ in transit from one party to the
other and insert a spurious symbol σ′ in its place. Crucially,
the adversary is free to decide which party will receive the
inserted symbol. This makes it possible for the adversary to
carry out two types of attacks, illustrated in Figure 1. In a
substitution attack, the inserted symbol is routed the same way
as the original symbol. Such an attack is precisely equivalent
to a substitution in Schulman’s model [22]. In an out-of-sync
attack, on the other hand, the inserted symbol is delivered to

Sender Receiver
�
✗

Sender Receiver
�
✗

�0

�0

Fig. 1. A substitution attack (top) and an out-of-sync attack (bottom).

the sender of the original symbol. From the sender’s point
of view, an out-of-sync attack looks like a response from the
other party, whereas that other party does not even know that
any communication has taken place and continues to wait for
an incoming symbol. Braverman et al. [5] examine a variety of
candidate models, including some that are clock-driven rather
than message-driven, and demonstrate that the BGMO model
is essentially the only reasonable interactive formalism that
allows deletions and insertions. It is important to note here
that even though deletions and insertions in the BGMO model
occur in pairs, the corruption pattern experienced by any given
party can be an arbitrary sequence of deletions and insertions.

B. Our results

For the purposes of defining the corruption rate, a deletion-
insertion pair in the BGMO model counts as a single corrup-
tion. This means that with corruption rate δ, the adversary is
free to carry out as many as δM attacks, where M is the
worst-case number of sent symbols. The main result of our
paper is the following theorem, where |π| denotes the worst-
case communication cost of a protocol π.

Theorem 1: Fix an arbitrary constant ε > 0, and let π be
an arbitrary protocol with alphabet Σ. Then there exists a
simulation for π with alphabet size O(1) and communication
cost O(|π| log |Σ|) that tolerates corruption rate 1

4 − ε in the
BGMO model.
Theorem 1 matches an upper bound of 1

4 on the highest
possible corruption rate, due to Braverman and Rao [6], which
holds even if the adversary is restricted to substitution attacks.

Theorem 1 is particularly generous in that it gives the ad-
versary a flat budget of δM attacks, where δ is the corruption
rate and M is the maximum number of sent symbols over all
executions. Due to out-of-sync attacks, the number of symbols
sent in a given execution may be substantially smaller than M.
This can happen, for example, if the adversary uses out-of-
sync attacks to force one of the parties to exit before his or her
counterpart has reached the end of the simulation. In such case,
the actual ratio of the number of attacks to the number of sent
symbols may substantially exceed δ. This leads us to consider
the following alternate formalism: with normalized corruption
rate (εsubs, εoos), the number of substitution attacks and out-of-
sync attacks in any given execution must not exceed an εsubs

3

and εoos fraction, respectively, of the number of symbols sent
in that execution. In this setting, we prove:

Theorem 2 (Normalized corruption rate): Fix an arbitrary
constant ε > 0, and let π be an arbitrary protocol with
alphabet Σ. Then there exists a simulation for π with alphabet
size O(1) and communication cost O(|π| log |Σ|) that tolerates
any normalized corruption rate (εsubs, εoos) in the BGMO
model with

εsubs +
3

4
εoos 6

1

4
− ε.

We show that Theorem 2, too, is optimal with respect to the
normalized corruption rates that it tolerates (Section V-I). In
the interesting special case when the adversary is restricted to
out-of-sync attacks, Theorem 2 tolerates normalized corruption
rate 1

3 − ε for any ε > 0. This contrasts with the maximum
possible corruption rate that can be tolerated with substitutions
alone, namely, 1

4−ε. Thus, there is a precise technical sense in
which substitution attacks are more powerful than out-of-sync
attacks. As we will discuss shortly, however, the mere presence
of out-of-sync attacks greatly complicates the analysis and
requires a fundamentally different approach.

In Theorems 1 and 2, each player computes the transcript
of the simulated protocol based on his or her entire record of
sent and received symbols, from the beginning of time until the
communication stops. In Section V-H, we adapt Theorem 1 to
the setting where Alice and Bob wish to know the answer by
a certain round, according to each player’s own counting. In
particular, Braverman et al. [5] required each player to know
the answer by round (1 − 2δ)N , where N is the maximum
number of rounds and δ is the corruption rate. With that
requirement, we give a simulation that tolerates corruption rate
1
6 − ε for any ε > 0, which is optimal by the impossibility
result in [5, Theorem G.1].

C. Background on interactive coding

In what follows, we review relevant previous work [22], [6],
[5] on interactive coding and contrast it with our approach.
A key tool in this line of research is a tree code, a coding-
theoretic primitive developed by Schulman [22]. Let Σin and
Σout be nonempty finite alphabets. A tree code is any length-
preserving map C : Σ∗in → Σ∗out with the property that for
any input string s ∈ Σ∗in and any i = 1, 2, 3, . . . , the first
i symbols of the codeword C(s) are completely determined
by the first i symbols of the input string s. A tree code has a
natural representation as an infinite tree in which every vertex
has arity |Σin| and every edge is labeled with a symbol from
Σout. To compute the codeword corresponding to a given input
string s = s1s2 . . . sk, one starts at the root and walks down
the tree for k steps, choosing at the ith step the branch that
corresponds to si. The sought codeword C(s), then, is the
concatenation of the edge labels along this path. Tree codes are
well-suited for encoding interactive communication because
Alice and Bob must compute and send symbols one at a time,
based on each other’s responses, rather than all at once at
the beginning of the protocol. In more detail, if Alice has
used a tree code C to send Bob s1, s2, . . . , sk−1 and now
wishes to send him sk, she need only send the kth symbol of

C(s1s2 . . . sk) rather than all of C(s1s2 . . . sk). This works
because by the defining properties of a tree code, the first
k−1 symbols of C(s1s2 . . . sk) are precisely C(s1s2 . . . sk−1)
and are therefore known to Bob already. To additionally cope
with adversarial substitutions, Schulman used tree codes in
which different codewords are “far apart.” More precisely,
for any two input strings s, s′ ∈ Σ∗in of equal length with
s1s2 . . . sk = s′1s

′
2 . . . s

′
k but sk+1 6= s′k+1, the codewords

C(s) and C(s′) disagree in a 1 − α fraction of positions
beyond the kth. Schulman [22] showed the existence of such
tree codes for any α > 0, where the size of the output alphabet
depends only on α and the input alphabet. Figure 2 (left)
offers an illustration of the distance property for tree codes: the
concatenation of the labels on the solid path should disagree
with the concatenation of the labels on the dashed path in a
1−α fraction of positions. Finally, when attempting to recover
the codeword from a corrupted string y ∈ Σ∗out, one outputs
the codeword of length |y| that is closest to y in Hamming
distance. This recovery procedure produces the true codeword
whenever y is sufficiently close to some codeword in suffix
distance, a distance on strings that arises in a natural way
from tree code properties.

We now review protocol terminology. Fix a deterministic
protocol π in canonical form that Alice and Bob need to
simulate on their corresponding inputs X and Y . Let Σ and
n denote the alphabet and the communication cost of π,
respectively. Associated to π is a tree of depth n called the
protocol tree for π. Each vertex in this tree corresponds to
the state of the protocol at some point in time, with the root
corresponding to the initial state before any symbols have
been exchanged, and each leaf corresponding to a final state
when the communication has ended. Each internal vertex has
arity |Σ|, corresponding to all possible symbols that can be
transmitted at that point. Execution of π corresponds to a
walk down the protocol tree, as follows. A given input X for
Alice makes available precisely one outgoing edge for every
internal vertex of even depth, corresponding to the symbol
that she would send if the execution were to arrive at that
vertex. Similarly, an input Y for Bob makes available precisely
one outgoing edge for every internal vertex of odd depth. To
execute π, Alice and Bob walk down the protocol tree one
edge at a time, at each step selecting the edge that is dictated
by the input of the player whose turn it is to speak.

We emphasize that there is no relation whatsoever between
protocol trees and trees representing tree codes. They are
structurally unrelated and play entirely different roles in the
simulation of a protocol over an unreliable channel.

D. The Braverman–Rao simulation

We are now in a position to describe the simulation of
Braverman and Rao [6] for the model with adversarial sub-
stitutions. Using the tree view of communication, we can
identify Alice’s input X with a set EX of outgoing edges
for the protocol tree vertices at even depths, one such edge
per vertex. Analogously, Bob’s input Y corresponds to a set
EY of outgoing edges for the vertices at odd depths. Execution
of π, then, corresponds to identifying the unique root-to-leaf

4

Fig. 2. Distance constraints for codewords in a tree code (left) and an edit
distance tree code (right).

path made up of edges in EX ∪EY . In Braverman and Rao’s
simulation, all communication is encoded and decoded using
a tree code with the parameter α > 0 set to a small constant.
The simulation amounts to Alice and Bob taking turns sending
each other edges from their respective sets EX and EY . When
it is Alice’s turn to speak, she decodes the edge sequence
received so far and attempts to extend the path made up
of her sent and received edges by another edge from EX ,
communicating this new edge to Bob. Bob acts analogously.
When the communication stops, Alice decodes her complete
sequence of received edges, identifies the first prefix of that
sequence whose edges along with EX contain a root-to-leaf
path, and takes this root-to-leaf path to be the transcript of π
on the given pair of inputs. Bob, again, acts analogously.

In the described simulation, the edge that a player sends
at any given point may be irrelevant but it is never incorrect.
In particular, Alice and Bob make progress in every round
where they correctly decode the edge sequences that they have
received so far. Braverman and Rao use a relation between
suffix distance and Hamming distance to argue that with
overall corruption rate 1

4 − ε, Alice decodes her received
edge sequence correctly more often than half of the time, and
likewise for Bob. This means that there are a considerable
number of rounds where Alice and Bob both decode their
received sequences correctly. It follows that at some point t∗,
Alice and Bob will have exchanged every edge in the root-to-
leaf path in EX ∪EY . As a final ingredient, the authors of [6]
argue that the adversary’s remaining budget for corruptions
beyond time t∗ cannot “undo” this progress, in the sense that
at the end of the communication Alice and Bob will correctly
decode a prefix that contains the root-to-leaf path in EX∪EY .

E. The BGMO simulation

We now describe the simulation of Braverman et al. [5] in
the BGMO model with substitutions, insertions, and deletions.
The authors of [5] draw inspiration from the classic work of
Levenshtein [18], who developed codes that allow recovery
from insertions and deletions in the noninteractive setting.
Recall that when coding for substitution errors, one uses
codewords that are far apart in Hamming distance [16]. Anal-
ogously, Levenshtein used codewords that are far apart in edit
distance, defined for a pair of strings as the minimum number

of insertions and deletions needed to transform one string
into the other. To handle interactive communication, then, it
is natural to start as Braverman et al. do with a tree code
in which the codewords are far apart in edit distance rather
than Hamming distance. The authors of [5] discover, however,
that it is no longer sufficient to have distance constraints for
pairs of codewords of the same length. Instead, for any two
paths of arbitrary lengths that cross to form a lambda shape,
such as the solid and dashed paths in Figure 2 (right), the
associated codeword segments need to be far apart in edit
distance. Braverman et al. establish the existence of such edit
distance tree codes and develop a notion of suffix distance for
them, thus providing a sufficient criterion for the recovery of
the codeword from a corrupted string.

Algorithmically, the BGMO simulation departs from
Braverman and Rao’s in two ways. First, all communication is
encoded and decoded using an edit distance tree code. Second,
a different mechanism is used to decide which leaf of the
protocol tree for π to output, whereby each player keeps a
tally of the number of times any given leaf has been reached
during the simulation and outputs the leaf with the highest
tally. The resulting analysis is quite different from [6], out-of-
sync attacks being the main source of difficulty. Braverman et
al. start by showing that each player correctly decodes his or
her received sequence of edges often enough over the course of
the simulation. This does not imply progress, however. Indeed,
all of Alice’s correct decodings may conceivably precede
all of Bob’s, whereas progress is only guaranteed when the
players’ correct decodings are interleaved. To prove that this
interleaving takes place, Braverman et al. split the simulation
into n progress intervals, corresponding to the length of the
longest segment recovered so far from the root-to-leaf path
in EX ∪ EY . They use an amortized analysis to argue that
the number of unsuccessful decodings per interval is small on
the average, allowing Alice and Bob to reach the leaf on the
root-to-leaf path in EX ∪EY at some point in the simulation.
They finish the proof by arguing that the players subsequently
revisit this leaf often enough that its tally outweighs that of
any other leaf.

F. Our approach

There are several obstacles to improving the corruption
tolerance from 1

18 − ε in Braverman et al. [5] to an optimal
1
4 − ε. Some of these obstacles are of a technical nature,
whereas others require a fundamental shift in approach and
analysis. In the former category, we develop edit distance
tree codes with stronger guarantees. Specifically, Braverman
et al. use tree codes with the property that for any two paths
that cross to form a lambda shape in the code tree, the edit
distance between the associated codeword segments is at least
a 1−α fraction of the length of the longer path. We prove the
existence of tree codes that guarantee a stronger lower bound
on the edit distance, namely, a 1 − α fraction of the sum of
the lengths of the paths. This makes intuitive sense because
the typical edit distance between randomly chosen strings of
lengths `1 and `2 over a nontrivial alphabet is approximately
`1 +`2 rather than max{`1, `2}; cf. Proposition 4. Our second

5

improvement concerns the decoding process. The notion of
suffix distance used by Braverman et al. is not flexible enough
to support partial recovery of a codeword. We define a more
general notion that we call k-suffix distance and use it to give
a sufficient criterion for the recovery of the first k symbols of
the codeword from a corrupted string. This makes it possible
to replace the tally-based output criterion of Braverman et
al. with a more efficient mechanism, whereby Alice and Bob
compute their output based on a prefix on the received edge
sequence rather than the entire sequence.

The above technical improvements fall short of achieving an
optimal corruption rate of 1

4 − ε. The fundamental stumbling
block is the presence of out-of-sync attacks. For one thing,
Alice and Bob’s transmissions can now be interleaved in a
complex way, and the basic notion of a round of communica-
tion is no longer available. Out-of-sync attacks also break the
symmetry between the two players in that it is now possible
for one of them to receive substantially fewer symbols than
the other. Finally, by directing a large number of out-of-sync
attacks at one of the players, the adversary can force the
simulation to stop early and thereby increase the effective error
rate well beyond 1

4 − ε. These are good reasons to doubt the
existence of a simulation that tolerates corruption rate 1

4 − ε
with substitutions, insertions, and deletions.

Our approach is nevertheless based on the intuition that
out-of-sync attacks should actually help the analysis because
they spread the brunt of a corruption between the two players
rather than heaping it all on a single player. Indeed, the
deletion that results from an out-of-sync attack only affects
the receiver, whereas the insertion only affects the sender. This
contrasts with substitution attacks, where the deletions and
insertions affect exclusively the receiver. With this in mind,
convexity considerations suggest that out-of-sync attacks may
actually be less damaging overall than substitution attacks.
To bear out this intuition, we introduce a “virtual” view of
communication that centers around the events experienced by
Alice and Bob (namely, insertions, deletions, and successful
deliveries) rather than the symbols that they send. In this virtual
view, the length of a time interval and the associated error rate
are defined in terms of the number of alternations in events
rather than in terms of the number of sent symbols. Among
other things, the virtual view restores the symmetry between
Alice and Bob and makes it impossible for the adversary
to shorten the simulation using out-of-sync attacks. By way
of analysis, we start by proving that corruption rate 1

4 − ε
translates into virtual corruption rate 1

4 − Ω(ε). Next, we
split the simulation into n progress intervals, corresponding
to the length of the longest segment recovered so far from
the root-to-leaf path in EX ∪ EY , and a final interval that
encompasses the remainder of the simulation. We bound the
virtual length of each interval in terms of the number of
corruptions and successful decodings. We then contrast this
bound with the virtual length of the overall simulation, which
unlike actual length is never smaller than the simulation’s
worst-case communication complexity. Using the previously
obtained 1

4 −Ω(ε) upper bound on the virtual corruption rate,
we argue that Alice and Bob successfully output the root-to-
leaf path in EX ∪ EY when their communication stops.

II. PRELIMINARIES

We start with a review of the technical preliminaries. The
purpose of this section is to make the paper as self-contained
as possible, and comfortably readable by a broad audience.
The expert reader may wish to skim this section for notation
or skip it altogether.

A. General

As usual, the complement of a set A is denoted A. For
arbitrary sets A and B, we define the cardinality of A relative
to B by |A|B = |A ∩ B|. For a set A and a sequence s, we
let A ∪ s denote the set of elements that occur in either A or
s. We define A∩s analogously. For a logical condition C, we
use the Iverson bracket:

I[C] =

{
1 if C holds,
0 otherwise.

We abbreviate [n] = {1, 2, . . . , n}, where n is any positive
integer. We let N = {0, 1, 2, 3, . . . } and Z+ = {1, 2, 3, . . .}
denote the set of natural numbers and the set of positive
integers, respectively. We use the term integer interval to
refer to any set of consecutive integers (finite or infinite). We
perform all calculations in the extended real number system
R ∪ {−∞,∞}. In particular, we have a/0 = ∞ for any
positive number a ∈ R. To simplify our notation, we further
adopt the convention that

0

0
= 0.

We let log x denote the logarithm of x to base 2. For a
real-valued function f : X → R, recall that arg minx∈X f(x)
denotes the set of points where f attains its minimum value.
Analogously, arg maxx∈X f(x) denotes the set of points
where f attains its maximum value. We let e = 2.7182 . . .
denote Euler’s number. The following well-known bound [15,
Proposition 1.4] is used in our proofs without further mention:

k∑
i=0

(
n

i

)
6
(en

k

)k
, k = 1, 2, . . . , n. (1)

B. String notation

In this manuscript, an alphabet Σ is any nonempty finite
set of symbols other than the asterisk ∗, which we treat as
a reserved symbol. Recall that Σ∗ stands for the set of all
strings over Σ. We let ε denote the empty string and adopt
the standard shorthand Σ+ = Σ∗ \ {ε}. For a nonnegative
integer k, we let Σ6k = {ε} ∪ Σ ∪ Σ2 ∪ · · · ∪ Σk denote
the set of all strings over Σ that have length at most k. The
concatenation of the strings u and v is denoted uv. For any
alphabet Σ, we let ≺ denote the standard partial order on Σ∗

whereby u ≺ v if and only if uw = v for a nonempty string
w. The derived relations �,�,� are defined as usual by

u � v ⇔ v ≺ u,
u � v ⇔ v ≺ u or v = u,

u � v ⇔ u ≺ v or v = u.

6

A prefix of v is any string u with u � v. A suffix of v is any
string u such that v = wu for some string w. A prefix or suffix
of v is called proper if it is not equal to v. A subsequence
of v is v itself or any string that can be obtained from v by
deleting one or more symbols.

For any string v, we let |v| denote the number of symbols
in v. We consider the symbols of v to be indexed in the usual
manner by positive integers, with vi denoting the symbol at
index i. For a set A ⊆ {1, 2, . . . , |v|}, we use the subsequence
notation v|A = vi1vi2 . . . vi|A| , where i1 < i2 < · · · < i|A| are
the elements of A. For a number ι ∈ [0,∞] in the extended
real number system, we let v<ι denote the substring of v
obtained by keeping the symbols at indices less than ι. As
special cases, we have v<1 = ε and v<∞ = v. The substrings
v6ι, v>ι, and v>ι are defined analogously. In any of these four
definitions, an index range that is empty produces the empty
string ε.

We view arbitrary finite sequences as strings over the
corresponding alphabet. With this convention, all notational
shorthands that we have introduced for strings are defined for
sequences as well.

C. Edit distance

Recall that the asterisk ∗ is a reserved symbol that does
not appear in any alphabet Σ in this manuscript. For a string
v ∈ (Σ ∪ {∗})∗, we let ∗(v) and ∗(v) denote the number of
asterisks and non-asterisk symbols in v, respectively:

∗(v) = |{i : vi = ∗}|,
∗(v) = |{i : vi 6= ∗}|.

In particular, ∗(v)+∗(v) = |v|. We let 6 ∗(v) stand for the string
of length ∗(v) obtained from v by deleting the asterisks. For
example, 6 ∗(∗ab∗aa) = abaa and 6 ∗(∗) = ε for any alphabet
symbols a, b.

An alignment for a given pair of strings s, r ∈ Σ∗ is a pair
of strings S,R ∈ (Σ ∪ {∗})∗ with the following properties:

|S| = |R|,
6 ∗(S) = s,

6 ∗(R) = r,

Ri 6= ∗ ∨ Si 6= ∗ (i = 1, 2, . . . , |S|),
(Ri 6= ∗ ∧ Si 6= ∗) =⇒ Ri = Si (i = 1, 2, . . . , |S|).

To better distinguish alignments from ordinary strings, we
reserve uppercase symbols for the former and lowercase for
the latter. We write S || R to indicate that S and R are an
alignment for some pair of strings. For an alignment S || R,
the strings S|A, R|A for any given subset A of indices also
form an alignment, to which we refer as a subalignment of
S || R.

The notion of a string alignment arises in an auxiliary
capacity in the context of edit distance. Specifically, the edit
distance between strings s, r ∈ Σ∗ is denoted ED(s, r) and is
given by

ED(s, r) = min
S||R
{∗(S) + ∗(R)},

where the minimum is over all alignments for s, r. Letting
LCS(s, r) denote the length of the longest common subse-
quence of s and r, we immediately have

ED(s, r) = |s|+ |r| − 2 LCS(s, r). (2)

The following equivalent definition is frequently useful:
ED(s, r) is the minimum number of insertion and deletion
operations necessary to transform s into r. In this equiv-
alence, an alignment S || R represents a specific way to
transform s into r, indicating the positions of the insertions
(Si = ∗, Ri 6= ∗), deletions (Si 6= ∗, Ri = ∗), and unchanged
symbols (Si = Ri 6= ∗). The operational view of edit distance
shows that it is a metric, with all strings s, r, t obeying

ED(s, r) = ED(r, s), (3)
ED(s, r) + ED(r, t) 6 ED(s, t). (4)

Another property of edit distance is as follows.
Proposition 3: For any strings u, v ∈ Σ∗,

ED(u, v) > ||u| − |v||.

In particular,

ED(u, v) = ||u| − |v||

whenever u is a subsequence of v or vice versa.
Proof: The proposition is immediate from (2). An al-

ternate approach is to appeal to the operational view of
edit distance, as follows. An insertion or deletion changes
the length of a string by at most 1. Therefore, at least
max{|u|− |v|, |v|− |u|} = ||u|− |v|| operations are needed to
transform u into v. If one of the strings is a subsequence of
the other, then either of them can clearly be transformed into
the other using ||u| − |v|| deletions or ||u| − |v|| insertions.

By definition, the edit distance between a pair of strings of
lengths n and m is at most n+m. We now show that this trivial
upper bound is essentially tight when the strings are chosen
uniformly at random over an alphabet of nonnegligible size.

Proposition 4: For any nonnegative integers n and m and
any 0 < α 6 1,

P
u∈Σn

v∈Σm

[ED(u, v) 6 (1− α)(n+m)] 6

(
e

α
√
|Σ|

)α(n+m)

.

Proof: We may assume that

e

α
√
|Σ|

6 1, (5)

7

the result being trivial otherwise. Letting ` = dα(n+m)/2e,
we have

P
u∈Σn

v∈Σm

[ED(u, v) 6 (1− α)(n+m)]

= P
u∈Σn

v∈Σm

[LCS(u, v) > `]

6

(
n

`

)(
m

`

)
· |Σ|

` · |Σ|n−` · |Σ|m−`

|Σ|n+m

6

(
n+m

2`

)
· 1

|Σ|`

6

(
e (n+m)

2`
· 1√
|Σ|

)2`

6

(
e

α
√
|Σ|

)2dα(n+m)/2e

6

(
e

α
√
|Σ|

)α(n+m)

,

where the first, fourth, and last steps use (2), (1), and (5),
respectively.

D. Suffix distance

We now discuss several other measures of distance for
alignments and strings. For an alignment S || R, define

∆(S,R) =
∗(S) + ∗(R)

∗(S)
.

This quantity ranges in [0,∞], with the extremal values taken
on. For example, ∆(ε, ε) = ∆(a, a) = 0 and ∆(∗, a) = ∞,
where a is any alphabet symbol. The definition of ∆ is
motivated in large part by its relation to edit distance:

Fact 5: For any alignment S || R with ∆(S,R) <∞,

ED(6 ∗(S), 6 ∗(R)) 6 ∆(S,R) · ∗(S).

Proof: Immediate from the definitions of ED and ∆.
The suffix distance for an alignment S || R is given by

SD(S,R) = max
i>1

∆(S>i, R>i).

This notion was introduced recently by Braverman et al. [5],
inspired in turn by an earlier notion of suffix distance due to
Schulman [22]. In our work, we must consider a more general
quantity yet. Specifically, we define SDk(S,R) for 0 6 k 6∞
to be the maximum ∆(S>i, R>i) over all indices i for which
∗(S<i) < k, with the convention that SDk(S,R) = 0 for
k = 0. As functions, we have

0 = SD0 6 SD1 6 SD2 6 SD3 6 · · · 6 SD∞ = SD . (6)

We generalize the above definitions to strings s, r ∈ Σ∗ by
letting

SD(s, r) = min
S||R

SD(S,R), (7)

SDk(s, r) = min
S||R

SDk(S,R), (8)

where in both cases the minimum is taken over all alignments
S || R for s, r. Since there are only finitely many alignments
for any pair of strings s and r, the quantities (7) and (8) can
be computed in finite time.

E. Trees and tree codes

In a given tree, a rooted path is any path that starts at the
root of the tree. The predecessors of a vertex v are any of the
vertices on the path from the root to v, including v itself. We
analogously define the predecessors of an edge e to be any
of the edges of the rooted path that ends with e, including e
itself. A proper predecessor of a vertex v is any predecessor
of v other than v itself; analogously for edges. In keeping with
standard practice, we draw trees with the root at the top and
the leaves at the bottom. Accordingly, we define the depth
of a vertex v as the length of the path from the root to v.
Similarly, the depth of an edge e is the length of the rooted
path that ends with e. We say that a given vertex v is deeper
than another vertex u if the depth of v is larger than the depth
of u; and likewise for edges.

Fix alphabets Σin and Σout. A tree code is any length-
preserving map C : Σ∗in → Σ∗out such that the first i symbols
of the output are completely determined by the first i symbols
of the input. Formally,

|C(x)| = |x|,
(C(x))6i = C(x6i), i = 0, 1, 2, . . . ,

for all x ∈ Σ∗in. Recall that the codewords of C are the
elements of C(Σ∗in), i.e., the strings y ∈ Σ∗out such that
y = C(x) for some x. A tree code can be represented as
an infinite rooted tree in which each node has precisely |Σin|
outgoing edges, and each edge is labeled with a symbol from
Σout. To compute C(x) for a given string x ∈ Σ∗in, one starts
at the root and walks down the tree for |x| steps, taking the
edge corresponding to xi in the ith step. Then C(x) is the
concatenation of the |x| edge labels, in the order they were
encountered during the walk. If there is an a priori bound n
on the length of the input string, as in this manuscript, it is
sufficient to work with the restriction of the tree code to strings
of length up to n. We refer to such a restriction as a tree code
of depth n.

To allow decoding in the presence of errors, structural
properties of a tree code must ensure that the encodings of
distinct strings are sufficiently far apart. How this is formalized
depends on the kinds of errors that must be tolerated. Previous
work has considered substitution errors [22], [6] and more
recently insertions and deletions [5]. We work in the latter
setting and adopt structural constraints similar to those in [5].

Definition 6 (α-violation): Fix a tree code C : Σ∗in → Σ∗out
and a real 0 6 α < 1. A quadruple (A,B,D,E) of vertices
in the tree representation of C form an α-violation if:

1) B is the deepest common predecessor of D and E;
2) A is any predecessor of B; and
3) ED(AD,BE) < (1 − α)(|AD| + |BE|), where AD ∈

Σ∗out is the concatenation of the code symbols along the
path from A to D, and analogously BE ∈ Σ∗out is the

8

A

B

E

D

Fig. 3. A quadruple of vertices A,B,D,E involved in an α-violation.

concatenation of the code symbols along the path from
B to E.

An α-good code is any tree code C for which no vertices
A,B,D,E in its tree representation form an α-violation.
Definition 6 is illustrated in Figure 3. This definition strength-
ens an earlier formalism due to Braverman et al. [5], in which
the inequality ED(AD,BE) < (1 − α) max{|AD|, |BE|}
played the role of our constraint 3). The strengthening is
essential to the tight results of our paper.

Remark 7: Observe that A,B,D,E can form an α-violation
for 0 6 α < 1 only when

D 6= E,

B 6= E.

Indeed, suppose that one or both of these conditions fail. Then
BE = ε and therefore

ED(AD,BE) = ED(AD, ε)

= |AD|
= |AD|+ |BE|
> (1− α)(|AD|+ |BE|),

where the second step follows from Proposition 3.

As the next observation shows, an α-good code allows for the
unique decoding of every codeword.

Fact 8: Let C : Σ∗in → Σ∗out be any α-good code, where
0 6 α < 1. Then C is one-to-one.

Proof: It will be convenient to prove the contrapositive.
Let C : Σ∗in → Σ∗out be a tree code such that

C(x′) = C(x′′), (9)
x′ 6= x′′ (10)

for some strings x′, x′′ ∈ Σ∗in. Let x be the longest common
prefix of x′ and x′′. Consider the vertices B,D,E in the
tree representation of C that correspond to the input strings
x, x′, x′′ ∈ Σ∗in, respectively. Then

ED(BD,BE) = 0 < (1− α)(|BD|+ |BE|),

where the first and second steps in the derivation fol-
low from (9) and (10), respectively. Thus, the quadruple
(B,B,D,E) forms an α-violation in C.

The following theorem, proved using the probabilistic
method, ensures the existence of α-good codes with good
parameters.

Theorem 9: For any alphabet Σin, any 0 < α < 1, and any
integer n > 0, there is an α-good code C : Σ6n

in → Σ6n
out of

depth n with

|Σout| =
⌈

(10|Σin|)1/α e

α

⌉2

.

This theorem and its proof are adaptations of an earlier result
due to Braverman et al. [5]. For the reader’s convenience, we
provide a complete and self-contained proof of Theorem 9 in
the appendix.

F. Communication protocols
We adopt the standard two-party model of deterministic

communication due to Yao [24]. In this model, Alice and
Bob receive inputs X ∈ X and Y ∈ Y , respectively,
where X and Y are some finite sets fixed in advance. They
communicate by sending each other symbols from a fixed
alphabet Σ. The most common alphabet is Σ = {0, 1}, but
we will encounter others as well. The transfer of an alphabet
symbol from one party to the other is an atomic operation to
which we refer as a transmission. We intentionally avoid the
term “message” in this paper because it is ambiguous as to
the length of the content. The communication between Alice
and Bob is governed by an agreed-upon protocol π. At any
given time, the protocol specifies, based on the sequence of
symbols exchanged so far between Alice and Bob, whether
the communication is to continue and if so, who should
send the next symbol. This next symbol is also specified
by the protocol, based on the sender’s input as well as the
sequence of symbols exchanged so far between Alice and
Bob. The output of the protocol π on a given pair of inputs
X,Y, denoted π(X,Y), is the complete sequence of symbols
exchanged between Alice and Bob on that pair of inputs.
The communication cost of the protocol π, denoted |π|, is
the worst-case number of transmissions, or equivalently the
maximum length of the protocol output on any input pair:
|π| = max |π(X,Y)|.

Given protocols π and Π with input space X × Y , we
say that Π simulates π if π(X,Y) = f(Π(X,Y)) for some
fixed function f and all inputs X ∈ X and Y ∈ Y . To
illustrate, any protocol π with alphabet Σ can be simulated in
the natural manner by a protocol Π with the binary alphabet
{0, 1} and communication cost |Π| 6 |π|max{1, dlog |Σ|e}.
Observe that the “simulates” relation on protocols is transitive.
A protocol π is said to be in canonical form if the following
two conditions hold: (i) the number of symbols exchanged
between Alice and Bob is an even integer and is the same for
all inputs X ∈X and Y ∈ Y ; (ii) Alice and Bob take turns
sending each other one symbol at a time, with Alice sending
the first symbol. A moment’s thought reveals that any protocol
π can be simulated by a protocol in canonical form with the
same alphabet and at most double the communication cost.

9

A communication protocol π over alphabet Σ can be visual-
ized in terms of a regular tree of depth |π|, called the protocol
tree. Every internal vertex of the protocol tree has precisely
|Σ| outgoing edges, each labeled with a distinct symbol of
the alphabet. A vertex of the protocol tree corresponds in
a one-to-one manner to a state of the protocol at some
point in time. Specifically, the vertex reachable from the
root via the path v ∈ Σ∗ corresponds to the point in time
when the symbols exchanged between Alice and Bob so far
are precisely v1, v2, . . . , v|v|, in that order. In particular, the
root vertex corresponds to the point in time just before the
communication starts, and a leaf corresponds to a point in
time when the communication has ended. Every internal vertex
of the protocol tree is said to be owned by either Alice or
Bob, corresponding to the identity of the speaker at that point
in time. For a given input X ∈ X , the protocol specifies
a unique outgoing edge for every vertex owned by Alice,
corresponding to the symbol that she would send at that point
in time with X as her input. Analogously, for any Y ∈ Y ,
the protocol specifies a unique outgoing edge for every vertex
owned by Bob. On any input pair X,Y, Alice and Bob’s
edges determine a unique root-to-leaf path. Execution of the
protocol corresponds to a walk down this unique root-to-leaf
path defined by Alice and Bob’s edges, and the output of
the protocol π(X,Y) is the concatenation of the edge labels
on that path. Adopting this view of communication, we will
henceforth identify Alice’s input with a set of edges, one for
each vertex that Alice owns; and likewise for Bob. Observe
that if the protocol is in canonical form, Alice and Bob’s inputs
are a set of outgoing edges for the even-depth vertices and a
set of outgoing edges for the odd-depth vertices, respectively,
one such edge per vertex.

G. The corruption model
Our review so far has focused on error-free communica-

tion. We adopt the corruption model introduced recently by
Braverman et al. [5]. In this model, the communication channel
between Alice and Bob is controlled by an omniscient and
computationally unbounded adversary. In particular, the adver-
sary knows Alice and Bob’s protocol and their inputs. The ad-
versary can interfere with a transmission in two different ways,
illustrated in Figure 1. In a substitution attack, the adversary
intercepts the sender’s symbol σ and replaces it with a different
symbol σ′, which is then delivered to the receiver. In an out-
of-sync attack, the adversary intercepts the sender’s symbol σ,
discards it, and then sends a spurious symbol σ′ back to the
sender in lieu of a response. Both a substitution attack and an
out-of-sync attack involve the deletion of a symbol from the
channel followed immediately by the insertion of a symbol;
what makes these attacks different is how the inserted symbol
is routed. On arrival, symbols manipulated by the adversary
are indistinguishable from correct deliveries. As a result, Alice
and Bob cannot in general tell on receipt of a transmission if
it is corrupted. We remind the reader that a transmission is
an atomic operation from the standpoint of interference by
the adversary: either a transmission is delivered correctly and
in full, or else an attack takes place and the transmission is
considered to be corrupted.

Execution of a protocol is now governed not only by
Alice and Bob’s inputs but also by the adversary’s actions.
Our objective is to faithfully simulate any protocol π with
only a constant-factor increase in communication cost. Our
simulations will all be in canonical form, with Alice and Bob
taking turns sending one symbol at a time. There are two
immediate benefits to this strict alternation. First, it guarantees
that the adversary cannot force crosstalk, with Alice and Bob
attempting to send a transmission at the same time. Second,
canonical form guarantees that the adversary cannot cause
Alice and Bob both to stall, i.e., wait indefinitely on each
other to send the next message. In particular, canonical form
ensures that at least one of the parties is able to run the
protocol to completion. The adversary may still force one of
the parties to stall, e.g., by carrying out an out-of-sync attack
during the next-to-last transmission. We consider an execution
of the protocol to be complete as soon as the communication
has stopped, due to Alice or Bob (or both) terminating.

With the adversary present, we must revisit the notion of
protocol output. We define the output of a player in a particular
execution to be the complete sequence of symbols, ordered
chronologically, that that player sends and receives over the
course of the execution. There is a minor technicality to
address regarding which received symbols are counted toward
a player’s output. Due to out-of-sync attacks, Alice and Bob
need not always be in agreement about how many rounds
of communication they have completed. As a result, it may
happen that one of the players expects the communication to
continue when the other has already exited. In that case, the
latter player may have one last symbol addressed to him which
he or she will never retrieve from the communication channel.
Since that symbol is not accessible to the player, we do not
count it toward his or her input. With this minor clarification,
we are prepared for formalize our notion of an interactive
coding scheme.

Definition 10 (Coding scheme): Let π be a given protocol
with input space X × Y . We say that protocol Π is an
interactive coding scheme for π that tolerates corruption rate
ε if:

1) Π has input space X × Y and is in canonical form;
2) when Π is executed on a given pair of inputs (X,Y) ∈

X ×Y , the adversary is allowed to subject any transmis-
sion in Π to a substitution attack or out-of-sync attack,
up to a total of at most ε|Π| attacks;

3) there exist functions f ′, f ′′ such that for any pair of inputs
(X,Y) ∈ X × Y and any allowable behavior by the
adversary, Alice’s output a and Bob’s output b satisfy
f ′(a) = f ′′(b) = π(X,Y).

In this formalism, the functions f ′ and f ′′ allow Alice and
Bob to interpret their respective outputs as an output of
the simulated protocol π, with the requirement that these
interpretations by Alice and Bob match the actual output of π
on the corresponding pair of inputs.

The previous definition gives the adversary a budget of ε|Π|
attacks, where |Π| is the maximum length of any execution
of Π. This flat budget applies even to executions that are
significantly shorter than |Π|, as may happen due to out-of-
sync attacks. This motivates us to define a second model,

10

where the number of attacks in any given execution is bounded
by a fraction of the actual length of that execution.

Definition 11 (Coding scheme with normalized corruption
rate): Let π be a given protocol with input space X × Y .
We say that protocol Π is an interactive coding scheme for π
that tolerates normalized corruption rate (εsubs, εoos) if:

1) Π has input space X × Y and is in canonical form;
2) when Π is executed on a given pair of inputs (X,Y) ∈

X ×Y , the adversary is allowed to subject any transmis-
sion in Π to a substitution attack or out-of-sync attack,
where
− the number of substitution attacks in any execution

is at most an εsubs fraction of the total number of
transmissions in that execution, and

− the number of out-of-sync attacks in any execution
is at most an εoos fraction of the total number of
transmissions in that execution;

3) there exist functions f ′, f ′′ such that for any pair of inputs
(X,Y) ∈ X × Y and any allowable behavior by the
adversary, Alice’s output a and Bob’s output b satisfy
f ′(a) = f ′′(b) = π(X,Y).

In this paper, we will obtain an interactive coding scheme
that achieves optimal corruption tolerance in both models
(Definition 10 and 11).

III. AUXILIARY RESULTS

We now prove a number of technical results on suffix
distance and tree codes that are used in the design and analysis
of our interactive coding schemes. Some of these results are
new and some are adapted from previous work [22], [6], [5].

A. Bounds for suffix distance

Here, we collect several lower and upper bounds on suffix
distance. We start with a proposition that gives bounds for
alignments in terms of their subalignments.

Proposition 12: Let S′ || R′ and S′′ || R′′ be given
alignments. Then:

1) ∆(S′S′′, R′R′′) 6 max{∆(S′, R′),∆(S′′, R′′)};
2) ∆(S′S′′, R′R′′) > min{∆(S′, R′),∆(S′′, R′′)};
3) SD(S′S′′, R′R′′) 6 max{SD(S′, R′),SD(S′′, R′′)};
4) SDk(S′S′′, R′R′′) 6 max{SDk(S′, R′),∆(S′′, R′′)} for

k 6 ∗(S′).
Proof: 1), 2) There are two cases to consider. If ∗(S′) > 0

and ∗(S′′) > 0, we have

∆(S′S′′, R′R′′) =
∗(S′S′′) + ∗(R′R′′)

∗(S′S′′)

=
∗(S′) + ∗(R′)
∗(S′) + ∗(S′′)

+
∗(S′′) + ∗(R′′)
∗(S′) + ∗(S′′)

=
∗(S′)

∗(S′) + ∗(S′′)
·∆(S′, R′)

+
∗(S′′)

∗(S′) + ∗(S′′)
·∆(S′′, R′′).

In other words, ∆(S′S′′, R′R′′) is a weighted average of
∆(S′, R′) and ∆(S′′, R′′) and therefore lies between the
minimum and maximum of these quantities.

For the complementary case, by symmetry we may assume
that ∗(S′) = 0. If S′ = ε, then ∆(S′S′′, R′R′′) = ∆(S′′, R′′)
and therefore 1) and 2) both hold. If S′ 6= ε, then we immedi-
ately have ∆(S′, R′) =∞ and ∆(S′S′′, R′R′′) > ∆(S′′, R′′),
whence 1) and 2), respectively.

3) We have

SD(S′S′′, R′R′′)

= max
i

∆((S′S′′)>i, (R
′R′′)>i)

= max{max
i

∆(S′′>i, R
′′
>i),max

i
∆(S′>iS

′′, R′>iR
′′)}

6 max{max
i

∆(S′′>i, R
′′
>i),max

i
∆(S′>i, R

′
>i),∆(S′′, R′′)}

= max{max
i

∆(S′′>i, R
′′
>i),max

i
∆(S′>i, R

′
>i)}

= max{SD(S′′, R′′),SD(S′, R′)},

where the third step uses 1).

4) The proof is similar to the previous item:

SDk(S′S′′, R′R′′)

= max
i
{∆((S′S′′)>i, (R

′R′′)>i) : ∗((S′S′′)<i) < k}

= max
i
{∆(S′>iS

′′, R′>iR
′′) : ∗(S′<i) < k}

6 max
i
{max{∆(S′>i, R

′
>i),∆(S′′, R′′)} : ∗(S′<i) < k}

= max{SDk(S′, R′),∆(S′′, R′′)},

where the second step is valid because k 6 ∗(S′) and in
particular i 6 |S′|, whereas the third step uses 1).

The following generic lower bound on suffix distance will
also be useful.

Proposition 13: Let k > 0 be given. Then for all r ∈ Σ∗

and s ∈ Σ+,

SDk(s, r) > 1− |r|
|s|
. (11)

Proof: Fix an arbitrary alignment S || R for s, r. Then

SDk(S,R) > ∆(S,R)

=
∗(S) + ∗(R)

∗(S)

=
∗(S) + ∗(R)

|s|

=
∗(S) + ∗(S) + |s| − |r|

|s|

>
|s| − |r|
|s|

,

where the next-to-last step uses ∗(S) + |s| = ∗(R) + |r|.

B. Longest prefix decoding

In interactive coding, a sequence of symbols is encoded with
a tree code and transmitted over an unreliable channel. On the
receiving end, an attempt is then made to decode the sequence.
The encoding and decoding are fundamentally different in that
the former is fully determined by the tree code, whereas the
latter allows for several reasonable approaches. In contrast
to the work of Braverman et al. [5], our interactive coding

11

schemes use longest prefix decoding, whereby the receiver
attempts to correctly decode as long a prefix of the original
sequence as possible. The following key theorem relates the
length of such a prefix to the suffix distance between the
original sequence and its received counterpart.

Theorem 14: Fix an α-good code C : Σ∗in → Σ∗out with 0 <
α < 1. Consider a string r ∈ Σ∗out and codewords s′, s′′ of C
with

SDk(s′, r) < 1− α,
SDk(s′′, r) < 1− α.

Then
s′6k = s′′6k. (12)

Previous work [5] settled a special case of Theorem 14 for
k = ∞, corresponding to the correct decoding of the entire
sequence. The extension to arbitrary k is essential to the
optimal interactive coding schemes in our paper.

Proof of Theorem 14 (cf. Braverman et al. [5]): Let s
be the longest common prefix of s′ and s′′. For the sake of
contradiction, assume that (12) fails. Then

s′ 6= s′′, (13)
|s| < k. (14)

We will show that these two conditions force an α-violation
in C, contrary to the theorem hypothesis.

Fix alignments S′ || R′ and S′′ || R′′ for the string pairs
s′, r and s′′, r, respectively, such that

SDk(S′, R′) < 1− α, (15)
SDk(S′′, R′′) < 1− α. (16)

Let i′, i′′ > 0 be integers with

s = 6 ∗(S′6i′), (17)

s = 6 ∗(S′′6i′′). (18)

It follows from (13) that

∗(S′>i′) + ∗(S′′>i′′) > 0. (19)

Observe also that r contains both 6 ∗(R′>i′) and 6 ∗(R′′>i′′) as
suffixes, which means that one of those strings is a suffix of
the other. Without loss of generality, assume that 6 ∗(R′′>i′′) is
a suffix of 6 ∗(R′>i′) and fix an integer j′′ > 0 such that

j′′ 6 i′′, (20)
6 ∗(R′′>j′′) = 6 ∗(R′>i′). (21)

It follows from (14) and (17) that ∗(S′6i′) < k. Analogously,
(14), (18), and (20) give ∗(S′′6j′′) < k. Therefore, the suffix
distance bounds (15) and (16) guarantee that

∆(S′>i′ , R
′
>i′) < 1− α, (22)

∆(S′′>j′′ , R
′′
>j′′) < 1− α. (23)

In addition, (19) and (20) imply that

∗(S′>i′) + ∗(S′′>j′′) > 0. (24)

Now

ED(6 ∗(S′>i′), 6 ∗(S′′>j′′))
6 ED(6 ∗(S′>i′), 6 ∗(R′>i′)) + ED(6 ∗(R′>i′), 6 ∗(S′′>j′′))
= ED(6 ∗(S′>i′), 6 ∗(R′>i′)) + ED(6 ∗(S′′>j′′), 6 ∗(R′>i′))
= ED(6 ∗(S′>i′), 6 ∗(R′>i′)) + ED(6 ∗(S′′>j′′), 6 ∗(R′′>j′′))
6 ∆(S′>i′ , R

′
>i′) · ∗(S′>i′) + ∆(S′′>j′′ , R

′′
>j′′) · ∗(S′′>j′′)

< (1− α)(∗(S′>i′) + ∗(S′′>j′′)), (25)

where the first four steps follow from (4), (3), (21), and Fact 5,
respectively, and the final step is immediate from (22)–(24).

It remains to interpret our findings in terms of the tree
representation of C. Let A,B,D,E be the vertices reached
by following the paths 6 ∗(S′′6j′′), s, s′′, s′, respectively, from the
root of the tree. Then (25) is equivalent to ED(BE,AD) <
(1−α)(|BE|+ |AD|), which is the promised α-violation.

We are now in a position to describe our decoding algorithm
and relate its decoding guarantees to the suffix distance
between the original sequence and its received counterpart.

Theorem 15: Let C : Σ∗in → Σ∗out be an α-good code, 0 <
α < 1. Then there is an algorithm DECODEC,α : Σ∗out → Σ∗out
that runs in finite time and obeys

(DECODEC,α(r))6k = s6k (26)

for any real 0 6 k 6 ∞, any codeword s, and any string
r ∈ Σ∗out with SDk(s, r) < 1− α.

Proof: For a codeword s and a string r, define

K(s, r) = max{k ∈ N ∪ {∞} : SDk(s, r) < 1− α}.

The maximization on the right-hand side is over a nonempty
set that contains k = 0, so that K(s, r) is well-defined for
every s, r pair. The algorithm is the natural one: on input
r, the output of DECODEC,α is any s∗ ∈ arg maxsK(s, r),
where s ranges over all codewords of C. To verify (26), let s
be any codeword with SDk(s, r) < 1−α. Then the algorithm
output s∗ obeys SDk(s∗, r) < 1−α and hence s∗6k = s6k by
Theorem 14.

It remains to show that DECODEC,α can be implemented to
run in finite time. Clearly, computing K(s, r) for any pair
of strings s and r takes finite time. To find a codeword
in arg maxsK(s, r), it is suffices to consider codewords
of length at most r/α because longer codewords s satisfy
K(s, r) = 0 by Proposition 13.

C. Frequency of good decodings

In the analysis of interactive coding schemes, one typically
needs to argue that there are many points in time when the
receiving party is able to correctly decode the sequence of
symbols transmitted so far. We estimate the number of such
“good decodings” using the following technical fact, closely
analogous to previous work [6], [5].

Proposition 16: Fix an alignment S || R and define

G = {i : Si = Ri 6= ∗},
D = {i : Si 6= ∗, Ri = ∗},
I = {i : Si = ∗, Ri 6= ∗}.

12

Algorithm 1: An algorithm for Proposition 16

1 A← ∅
2 i← `
3 while i > 0 do
4 if SD(S1S2 . . . Si, R1R2 . . . Ri) < 1− α then
5 A← A ∪ {i}
6 i← i− 1
7 else
8 find any index j with

∆(SjSj+1 . . . Si, RjRj+1 . . . Ri) > 1− α
9 i← j − 1

10 end
11 end
12 return A

Then for all 0 < α < 1,

|{i ∈ G : SD(S1S2 . . . Si, R1R2 . . . Ri) < 1− α}|

> |G| − α

1− α
|D| − 1

1− α
|I|.

The notation in Proposition 16 is mnemonic, with I,D, and
G denoting the positions of the inserted, deleted, and “good”
(unchanged) symbols, respectively. Note that insertions and
deletions play asymmetric roles in this result, insertions being
more damaging than deletions.

Proof of Proposition 16 (adapted from [6], [5]): Ab-
breviate ` = |S| = |R| and consider Algorithm 1, which
iteratively constructs a subset

A ⊆ {i : SD(S1S2 . . . Si, R1R2 . . . Ri) < 1− α}. (27)

Since SD(S1S2 . . . Si, R1R2 . . . Ri) > ∆(Si, Ri) > 1 for
every i ∈ I ∪D, we infer that A ⊆ G. In particular,

∆(SA, RA) =
|I ∩A|+ |D ∩A|
|G ∩A|+ |D ∩A|

=
|I|+ |D|

|G| − |A|+ |D|
. (28)

The complementary set A is the disjoint union of the intervals
{j, j + 1, . . . , i} computed by the else clause, each of which
satisfies ∆(SjSj+1 . . . Si, RjRj+1 . . . Ri) > 1−α. It follows
by Proposition 12, item 2) that ∆(SA, RA) > 1 − α, which
along with (28) gives

|A| > |G| − α

1− α
|D| − 1

1− α
|I|.

In view of (27) and A ⊆ G, the proof is complete.

IV. A CODING SCHEME WITH A POLYNOMIAL-SIZE
ALPHABET

We will now show how to faithfully simulate any protocol
in the adversarial setting at the expense of a large increase in
alphabet size and a constant-factor increase in communication
cost. For an arbitrary constant ε > 0, we give an interactive
coding scheme that tolerates corruption rate 1

4 − ε as well as

any normalized corruption rate (εsubs, εoos) with εsubs + 3
4εoos 6

1
4 − ε. In detail, the main result of this section is as follows.

Theorem 17: Fix an arbitrary constant ε > 0, and let π
be an arbitrary protocol with alphabet Σ. Then there exists
an interactive coding scheme for π with alphabet size (|Σ| ·
|π|)O(1) and communication cost O(|π|) that tolerates

1) corruption rate 1
4 − ε;

2) any normalized corruption rate (εsubs, εoos) such that
εsubs + 3

4εoos 6 1
4 − ε.

As we will see later in this paper, Theorem 17 is optimal with
respect to the corruption rate and normalized corruption rate
that it tolerates. We have organized our proof of the theorem
around nine milestones, corresponding to Sections IV-A–IV-I.
Looking ahead, we will obtain the main result of this paper
by improving the alphabet size to a constant.

A. The simulation

Recall from Section II-G that any protocol can be brought
into canonical form at the expense of doubling its communi-
cation cost. We may therefore assume that π is in canonical
form to start with. As a result, we may identify Alice’s input
with a set X of odd-depth edges of the protocol tree for π,
and Bob’s input with a set Y of even-depth edges. Execution
of π corresponds to a walk down the unique root-to-leaf path
in X ∪ Y, whose length we denote by

n = |π|.

Analogous to previous work [6], [5], our interactive coding
scheme involves Alice and Bob sending edges from their
respective input sets X and Y . At any given point, Alice
will send an edge e only if she has already sent every proper
predecessor of e in X , and likewise for Bob. This makes it
possible for the sender to represent an edge e succinctly as
a pair (i, σ), where i is the index of a previous transmis-
sion by the sender that featured the grandparent of e, and
σ ∈ Σ × Σ uniquely identifies e relative to that grandparent.
When transmitting an edge e of depth 1 or 2, the sender sets
i = 0 to indicate that there are no proper predecessors to
refer to. Viewing each (i, σ) pair as an alphabet symbol, the
resulting alphabet Σin has size at most |Σ|2 multiplied by the
total number of transmissions. The following lemma shows
that given any sequence of edge representations, it is always
possible to recover the corresponding sequence of edges.

Lemma 18: Consider an arbitrary point in time, and let

(i1, σ1), (i2, σ2), . . . (it, σt) (29)

be the sequence of edge representations sent so far by one
of the players. Then the sequence uniquely identifies the
corresponding edges e1, e2, . . . , et sent by that player.

Proof: The proof is by induction of t, the base
case t = 0 being trivial. For the inductive step, let
e1, e2, . . . , et−1 be the unique sequence of edges correspond-
ing to (i1, σ1), (i2, σ2), . . . , (it−1, σt−1). Recall that it ∈
{0, 1, 2, . . . , t−1}. If it ∈ {1, 2, . . . , t−1}, then by definition
(it, σt) is the grandchild of eit that corresponds to σt ∈ Σ×Σ.
If it = 0, then by definition (it, σt) is the edge of depth 1 in
Alice’s case, or depth 2 in Bob’s, that corresponds to σt.

13

Algorithm 2: Coding scheme for Alice

Input: X (set of Alice’s edges)
1 encode and send the edge in X incident to the root

2 foreach i = 1, 2, 3, . . . , N do

3 receive a symbol ri ∈ Σout

4 s← DECODEC,α(r1r2 . . . ri)

5 interpret s as a sequence B of even-depth edges

6 `← maximum length of a rooted path in X ∪B

7 compute the shortest prefix of B s.t. X ∪B contains
a rooted path of length `, and let P be the rooted
path so obtained

8 out← deepest vertex in P

9 if i 6 N − 1 then
10 encode and send the deepest edge in P ∩X

whose proper predecessors in X have all been
sent

11 end
12 end

Algorithm 3: Coding scheme for Bob

Input: Y (set of Bob’s edges)
1 foreach i = 1, 2, 3, . . . , N do

2 receive a symbol ri ∈ Σout

3 s← DECODEC,α(r1r2 . . . ri)

4 interpret s as a sequence A of odd-depth edges

5 `← maximum length of a rooted path in Y ∪A

6 compute the shortest prefix of A s.t. Y ∪A contains
a rooted path of length `, and let P be the rooted
path so obtained

7 out← deepest vertex in P

8 encode and send the deepest edge in P ∩ Y whose
proper predecessors in Y have all been sent

9 end

A formal description of the interactive coding scheme is
given by Algorithms 2 and 3 for Alice and Bob, respectively.
In this description, α = α(ε) ∈ (0, 1) and N = N(n, ε) are
parameters to be set later, and C : Σ∗in → Σ∗out is an arbitrary
α-good code whose existence is ensured by Theorem 9. Alice
and Bob use C to encode every transmission. In particular,
the encoded symbol from Σout at any given point depends not
only on the symbol from Σin being transmitted but also on the
content of previous transmissions by the sender. The decoding
is done using the DECODEC,α algorithm of Theorem 15. Apart
from the initial send by Alice in line 1, the roles of two players
are symmetric. In particular, the pseudocode makes it clear

that Alice and Bob send at most N transmissions each. We
conclude that |Σin| 6 |Σ|2 · 2N and therefore by Theorem 9,

|Σout| = (|Σ| ·N)O(1/α). (30)

We pause to elaborate on the decoding and interpretation
steps in lines 4–5 for Alice and lines 3–4 for Bob. The
decoding step produces a codeword s of C, which by Fact 8
corresponds to a unique string in Σ∗in. Recall that this string
is of the form (29) for some integers i1, i2, . . . , it and some
σ1, σ2, . . . , σt ∈ Σ×Σ. The receiving party uses the inductive
procedure of Lemma 18 to convert (29) to a sequence of
edges. It may happen that (29) is syntactically malformed;
in that case, the receiving party interrupts the interpretation
process at the longest prefix of (29) that corresponds to a
legitimate sequence of edges. This completes the interpretation
step, yielding a sequence of edges A for Bob and B for Alice.

In Sections IV-B–IV-I below, we examine an arbitrary but
fixed execution of the interactive coding scheme. In particular,
we will henceforth consider the inputs X and Y and the
adversary’s actions to be fixed. We allow any behavior by
the adversary as long as it meets one of the criteria 1), 2) in
Theorem 17. We will show that as soon as the communication
stops, the variable out is set for both Alice and Bob to the
leaf vertex of the unique root-to-leaf path in X ∪Y . This will
prove Theorem 17.

B. Events

A central notion in our analysis is that of an event. There
are three types of events: deletions, insertions, and good
events. A successful transmission corresponds to a single
event, which we call a good event. A transmission that is
subject to an attack, on the other hand, corresponds to two
events, namely, a deletion event followed immediately by an
insertion event. Each event has an addressee. The addressee of
a good event is defined to be the receiver of the transmission.
Similarly, the deletion and insertion events that arise from a
substitution attack are said to be addressed to the receiver of
the transmission. In an out-of-sync attack, on the other hand,
the deletion event is addressed to the intended receiver of the
transmission, whereas the insertion event is addressed to the
sender.

To illustrate these definitions, consider the hypothetical
execution in Table I. In this example and the rest of the paper,
transmissions are ordered chronologically and numbered with
consecutive integers starting at 1. The columns of Table I are
numbered 1 through 10, corresponding the ten transmissions
sent in this execution. These ten columns are further split into
subcolumns that correspond to individual events, as follows.

1) Transmissions 1, 3, 4, 5, 7, 9, 10 result in successful de-
liveries, each contributing a good event addressed to the
receiver of the transmission. For each of these transmis-
sions, the entries in the sent and received rows coincide
and show the symbol delivered from the sender to the
receiver.

2) Transmission 2 is subject to a substitution attack, whereby
the sent symbol “1” is deleted (corresponding to the “1”
and ∗ entries in the sent and received rows, respectively)

14

TABLE I
A HYPOTHETICAL EXECUTION.

Transmission # 1 2 3 4 5 6 7 8 9 10
Addressee B A A B A B A B A B A B A
Symbol sent 0 1 ∗ 0 1 0 0 ∗ 1 0 ∗ 0 1
Symbol received 0 ∗ 0 0 1 0 ∗ 0 1 ∗ 1 0 1

and a symbol of “0” is inserted in its place (corresponding
to the ∗ and “0” entries in the sent and received rows,
respectively). Transmission 2 thus contributes a deletion
event and an insertion event, both addressed to the
receiver of the transmission.

3) Transmissions 6 and 8 are subject to out-of-sync attacks,
each contributing a deletion event and an insertion event.
In both cases, the deletion event is addressed to the
transmission’s intended receiver, whereas the insertion
event is addressed to the transmission’s sender. In the
case of transmission 6, the sent symbol “0” is deleted
(corresponding to the “0” and ∗ entries in the sent and
received rows, respectively) and a new symbol of “0”
is spuriously sent back on behalf of the transmission’s
intended receiver (corresponding to the ∗ and “0” entries
in the sent and received rows, respectively).

Execution of the interactive coding scheme gives rise to a
string alignment S′ || R′ for Alice and a string alignment
S′′ || R′′ for Bob. Each position i in the strings S′ and R′

corresponds in a one-to-one manner to an event addressed to
Alice, which is either a good event (S′i = R′i), a deletion
(S′i 6= ∗, R′i = ∗), or an insertion (S′i = ∗, R′i 6= ∗). An
analogous description applies to Bob’s strings S′′ and R′′. To
illustrate, the execution in Table I corresponds to

S′ = 1∗101∗1,
R′ = ∗01∗111

and

S′′ = 000∗00,

R′′ = 0000∗0.

Recall that we order transmissions chronologically and number
them with consecutive integers starting at 1. For integers i 6 j,
we let S′[i, j] || R′[i, j] denote the subalignment of S′ || R′
that corresponds to transmissions i, i+ 1, . . . , j. Analogously,
S′′[i, j] || R′′[i, j] denotes the subalignment of S′′ || R′′ that
corresponds to transmissions i, i+1, . . . , j. We alert the reader
that in our notation, S′i and S′[i, i] have completely different
meanings: the former is the ith symbol of S′, whereas the latter
is the substring of S′ that corresponds to the ith transmission.
We define

G′ = {i : S′[i, i] = R′[i, i] 6= ε},
D′ = {i : R′[i, i] contains ∗},
I ′ = {i : S′[i, i] contains ∗}.

In words, G′, D′, I ′ are the sets of transmissions that con-
tribute a good event, a deletion event, and an insertion event,

respectively, addressed in each case to Alice. We define
analogous sets for Bob:

G′′ = {i : S′′[i, i] = R′′[i, i] 6= ε},
D′′ = {i : R′′[i, i] contains ∗},
I ′′ = {i : S′′[i, i] contains ∗}.

We abbreviate

G = G′ ∪G′′,
D = D′ ∪D′′,
I = I ′ ∪ I ′′.

We let T denote the combined number of transmissions sent
by Alice and Bob. Since neither player can send more than N
transmissions, we have

T 6 2N. (31)

The following lemma collects basic properties of the sets just
introduced.

Lemma 19: The following properties hold:
1) G′ and G′′ form a partition of G;
2) I ′ and I ′′ form a partition of I;
3) D′ and D′′ form a partition of D;
4) I = D;
5) I ′ \D′ = D′′ \ I ′′;
6) I ′′ \D′′ = D′ \ I ′;
7) G and I form a partition of {1, 2, . . . , T};
8) G and D form a partition of {1, 2, . . . , T}.

Proof: Properties 1)–3) hold because any given transmis-
sion contributes at most one good event, at most one deletion
event, and at most one insertion event, where each event is
addressed to precisely one of the players. Property 4) holds
because deletions and insertions always occur in pairs, with
any given transmission generating both or neither. Property 5)
follows set-theoretically from the preceding properties:

I ′ \D′ = (I \ I ′′) \ (D \D′′) by 2) and 3)
= (D \ I ′′) \ (D \D′′) by 4)

= D ∩ I ′′ ∩D ∩D′′ by Boolean algebra

= D ∩ I ′′ ∩ (D ∪D′′) by Boolean algebra

= D ∩ I ′′ ∩D′′ by Boolean algebra

= I ′′ ∩D′′ by 3)
= D′′ \ I ′′ by Boolean algebra.

The proof of 6) is entirely analogous. Properties 7) and 8) can
be restated by saying that the transmissions can be partitioned
into those that result in successful deliveries and those that are
subject to an attack.

15

C. Excellent transmissions

A straightforward consequence of Lemma 18 is that the
codewords 6 ∗(S′[1, t]) and 6 ∗(S′′[1, t]) completely reveal the
sequences of edges sent by Bob and by Alice, respectively,
over the course of the first t transmissions. We formalize this
observation below.

Lemma 20: Let t ∈ {1, 2, . . . , T} be given. Then:
1) the string 6 ∗(S′[1, t]) uniquely identifies the sequence of

protocol tree edges that Bob sends Alice over the course
of transmissions 1, 2, . . . , t;

2) the string 6 ∗(S′′[1, t]) uniquely identifies the sequence of
protocol tree edges that Alice sends Bob over the course
of transmissions 1, 2, . . . , t.

Proof: By symmetry, it suffices to prove the former
claim. By Fact 8, the codeword 6 ∗(S′[1, t]) ∈ Σ∗out corresponds
to a unique string in Σ∗in, which is the sequence of edge
representations that Bob sent Alice over the course of the
first t transmissions. By Lemma 18, this sequence of edge
representations uniquely identifies the edges themselves.

Of course, due to interference by the adversary, the receiving
party rarely if ever has access to the exact codeword sent by
his or her counterpart. This motivates us to identify sufficient
conditions that allow for complete and correct decoding by
the receiving party. Define

E′ = {i ∈ G′ : SD(S′[1, i], R′[1, i]) < 1− α},
E′′ = {i ∈ G′′ : SD(S′′[1, i], R′′[1, i]) < 1− α}.

We refer to E′ and E′′ as the sets of excellent transmissions
for Alice and Bob, respectively. This term is borne out by the
following lemma.

Lemma 21: Let t ∈ {1, 2, . . . , T} be given.
1) If t ∈ E′, then on receipt of transmission t, Alice is able

to correctly recover the complete sequence of edges that
Bob has sent her by that time.

2) If t ∈ E′′, then on receipt of transmission t, Bob is able
to correctly recover the complete sequence of edges that
Alice has sent him by that time.
Proof: By symmetry, it again suffices to prove the former

claim. Let t ∈ E′. Then by definition, SD(S′[1, t], R′[1, t]) <
1 − α. Taking k = ∞ in Theorem 15, we conclude that
DECODEC,α(6 ∗(R′[1, t])) = 6 ∗(S′[1, t]). This means that on
receipt of transmission t, Alice is able to correctly recover
the entire codeword 6 ∗(S′[1, t]) that Bob has sent her so far.
By Lemma 20, this in turn makes it possible for Alice to
correctly identify the corresponding sequence of edges.

D. Bad transmissions

Recall that each symbol received by Alice from the com-
munication channel corresponds in a one-to-one manner to
a good event or an insertion. Put another way, each such
symbol originates in a one-to-one manner from a transmission
in G′ ∪ I ′. As we saw in Section IV-C, the symbols that
correspond to excellent transmissions E′ ⊆ G′∪I ′ allow Alice
to correctly recover the sequence of edges that Bob has sent
her so far. In all other cases, the conversion of the received
string to an edge sequence can produce unpredictable results

and cannot be trusted. This motivates us to define the sets of
bad transmissions for Alice and Bob by

B′ = (G′ ∪ I ′) \ E′,
B′′ = (G′′ ∪ I ′′) \ E′′,

respectively. We abbreviate

B = B′ ∪B′′.
Lemma 22: The sets B′ and B′′ form a partition of B.

Proof:

B′ ∩B′′ ⊆ (G′ ∪ I ′) ∩ (G′′ ∪ I ′′)
= (G′ ∩G′′) ∪ (I ′ ∩ I ′′) ∪ (G′ ∩ I ′′) ∪ (G′′ ∩ I ′)
⊆ (G′ ∩G′′) ∪ (I ′ ∩ I ′′) ∪ (G ∩ I)

= ∅,

where the last step uses items 1), 2), 7) of Lemma 19.
As one might expect, the number of bad transmissions is

closely related to the number of attacks by the adversary. This
relation is formalized by the following lemma.

Lemma 23: For any interval J with 1 ∈ J,

|B|J 6
2

1− α
|D|J .

The reader will recall that |B|J = |B∩J | and |D|J = |D∩J |
in the lemma above. We use this relative cardinality notation
extensively in the rest of the paper for improved readability
and ease of typesetting.

Proof of Lemma 23: Since B and D are sets of
positive integers, it suffices to consider an integer interval
J = {1, 2, . . . , t}. Applying Proposition 16 to the alignment
S′[1, t] || R′[1, t] shows that

|E′ ∩ {1, 2, . . . , t}| > |G′ ∩ {1, 2, . . . , t}|

− α

1− α
|D′ ∩ {1, 2, . . . , t}| − 1

1− α
|I ′ ∩ {1, 2, . . . , t}|,

which can be succinctly written as

|E′|J > |G′|J −
α

1− α
|D′|J −

1

1− α
|I ′|J . (32)

Now

|B′|J = |(G′ ∪ I ′) \ E′|J
= |G′ ∪ I ′|J − |E′|J
= |G′|J + |I ′|J − |E′|J

6
α

1− α
|D′|J +

2− α
1− α

|I ′|J , (33)

where the first step holds by definition, the second uses the
containment E′ ⊆ G′, the third is valid by Lemma 19, item 7),
and the fourth follows from (32). A symmetric argument gives

|B′′|J 6
α

1− α
|D′′|J +

2− α
1− α

|I ′′|J . (34)

As a result,

|B|J 6
α

1− α
(|D′|J + |D′′|J) +

2− α
1− α

(|I ′|J + |I ′′|J)

=
α

1− α
|D|J +

2− α
1− α

|I|J

=
2

1− α
|D|J ,

16

where the first step follows from (33) and (34), the second
uses Lemma 19, items 2), 3), and the third uses Lemma 19,
item 4).

E. Virtual length

Key to our approach is a virtual view of communication
that centers around events rather than actual transmissions.
In particular, we focus on alternations in event addressee as
opposed to alternations in sender. To start with, we define for
an arbitrary set Z ⊆ R its virtual length by

|||Z||| = |G′ ∪ I ′ ∪D′|Z + |G′′ ∪ I ′′ ∪D′′|Z . (35)

In other words, the virtual length |||Z||| is the number of
transmissions in Z that have an event addressed to Alice, plus
the number of transmissions in Z that have an event addressed
to Bob. It follows immediately that

|Z| 6 |||Z||| 6 2|Z|

for any Z ⊆ {1, 2, . . . , T}, and a moment’s thought reveals
that the lower and upper bounds can both be attained. We are
of course interested only in subsets Z ⊆ {1, 2, . . . , T}, but
defining virtual length as we did above for arbitrary Z ⊆ R
greatly simplifies the notation. We now show that in the special
case when Z is an interval, the two summands in (35) differ
by at most 1.

Lemma 24: For any interval J,

|||J ||| 6 2|G′ ∪ I ′ ∪D′|J + 1, (36)
|||J ||| 6 2|G′′ ∪ I ′′ ∪D′′|J + 1 (37)

and

|||J ||| > 2|G′ ∪ I ′ ∪D′|J − 1, (38)
|||J ||| > 2|G′′ ∪ I ′′ ∪D′′|J − 1. (39)

Proof: Consider arbitrary integers i1 < i2 such that

i1 ∈ (G′′ ∪D′′ ∪ I ′′) \ (G′ ∪D′ ∪ I ′),
i2 ∈ (G′′ ∪D′′ ∪ I ′′) \ (G′ ∪D′ ∪ I ′).

The first equation states that transmission i1 is sent by Alice
and is not subject to an out-of-sync attack. Recall that a
transmission causes a change of speaker if and only if it is
not subject to an out-of-sync attack. As a result, a change
of speaker from Alice to Bob happens immediately after
transmission i1. Since the later transmission i2 is again sent
by Alice, there must be an intermediate transmission j that
causes a change of speaker from Bob to Alice. This implies

j ∈ (G′ ∪D′ ∪ I ′) \ (G′′ ∪D′′ ∪ I ′′).

The previous paragraph shows that the interval between any
two distinct integers in (G′′∪D′′∪I ′′)\(G′∪D′∪I ′) contains
at least one integer in (G′ ∪D′ ∪ I ′) \ (G′′ ∪D′′ ∪ I ′′). We
conclude that for any interval J,

|G′′ ∪D′′ ∪ I ′′|J 6 |G′ ∪D′ ∪ I ′|J + 1.

Adding |G′ ∪ D′ ∪ I ′|J to both sides of this inequality
yields (36), whereas adding |G′′ ∪ D′′ ∪ I ′′|J to both sides

yields (39). A symmetric argument settles the remaining
inequalities (37) and (38).

We now show that the combined virtual length of all
transmissions is at least 2N. This contrasts with the number
of transmissions themselves, which can be significantly less
than 2N due to out-of-sync attacks.

Lemma 25: The total virtual length of all transmissions
satisfies

|||[1, T]||| > 2N.

Proof: For the communication to stop, one of the players
needs to terminate. This happens only when that player has
sent N symbols and received as many. Formulaically, this
translates to

|G′′ ∪D′′| > N,

|G′ ∪ I ′| > N

if Alice terminates first, and

|G′ ∪D′| > N,

|G′′ ∪ I ′′| > N

if Bob terminates first. Either way,

|||[1, T]||| = |G′ ∪D′ ∪ I ′|+ |G′′ ∪D′′ ∪ I ′′|
> 2N,

as was to be shown.
Next, we relate the virtual length of any interval to the

number of attacks experienced by Alice and Bob during that
time.

Lemma 26: Let i, j be given integers with i 6 j. Then

|||[i, j]||| 6
4|D|[i,j]

δ
+ 1 (40)

for any 0 < δ 6 1 such that

max{∆(S′[i, j], R′[i, j]), ∆(S′′[i, j], R′′[i, j])} > δ. (41)

Proof: By hypothesis, ∆(S′[i, j], R′[i, j]) > δ or
∆(S′′[i, j], R′′[i, j]) > δ. Without loss of generality, assume
the former. Abbreviating J = [i, j], we have

|D′|J + |I ′|J
|D′|J + |G′|J

> δ,

which along with δ > 0 gives

|D′|J + |G′|J 6
|D′|J + |I ′|J

δ
. (42)

17

Now
|||J ||| − 1

2
6 |G′ ∪D′ ∪ I ′|J
= |G′|J + |D′ ∪ I ′|J
= |G′|J + |D′|J + |I ′ \D′|J

6
|D′|J + |I ′|J

δ
+ |I ′ \D′|J

6
|D′|J + |I ′|J + |I ′ \D′|J

δ

=
|I ′|J + |I ′ ∪D′|J

δ

6
|I|J + |I ∪D|J

δ

=
2|D|J
δ

,

first step follows from Lemma 24, the second uses Lemma 19,
items 7), 8); the fourth is valid by (42); the fifth uses 0 < δ 6
1; and the last step is immediate from Lemma 19, item 4).

Finally, we derive a useful bound on the virtual length
of an interval in terms of the number of excellent and bad
transmissions in it.

Lemma 27: For any interval J,

|||J ||| 6 2(|B|J + |E′|J) + 1, (43)
|||J ||| 6 2(|B|J + |E′′|J) + 1. (44)

Proof: By symmetry, it suffices to prove (43). We have

D′ \ I ′ = I ′′ \D′′

⊆ I ′′

⊆ I ′′ ∪ (G′′ \ E′′)
= (I ′′ ∪G′′) \ E′′

= B′′, (45)

where the first and fourth steps use items 6) and 7), respec-
tively, of Lemma 19. Now (43) can be verified as follows:

|||J ||| − 1

2
6 |G′ ∪ I ′ ∪D′|J
= |G′ ∪ I ′|J + |D′ \ (G′ ∪ I ′)|J
= |G′ ∪ I ′|J + |D′ \ I ′|J
= |E′|J + |(G′ ∪ I ′) \ E′|J + |D′ \ I ′|J
= |E′|J + |B′|J + |D′ \ I ′|J
6 |E′|J + |B′|J + |B′′|J
= |E′|J + |B|J ,

where the first step is valid by Lemma 36; the third step
uses Lemma 19, item 8); the fourth step follows from the
containment E′ ⊆ G′; the fifth step applies the definition of
B′; the sixth step is immediate from (45); and the final step
is justified by Lemma 22.

F. Virtual corruption rate

In keeping with our focus on events rather than transmis-
sions, we define

corr J =
|D ∩ J |
|||J |||

for any interval J. We refer to this quantity as the virtual cor-
ruption rate of J. The idea of normalizing the corruption rate
relative to execution length was previously used by Agrawal,
Gelles, and Sahai [1]. Our notion of virtual corruption rate is
somewhat more subtle in that it takes into account not only the
execution length but also the numbers of attacks of each type.
The next lemma shows that over the course of the execution,
the virtual corruption rate is relatively low.

Lemma 28: Assumptions 1) and 2) in Theorem 17 imply

corr[1, T] 6
1

4
− ε (46)

and
corr[1, T] 6

1

4
− ε

2
, (47)

respectively.
Proof: Assumption 1) states that the total number of

attacks does not exceed a 1
4 − ε fraction of the worst-

case communication cost of the interactive coding scheme.
Formulaically,

|D| 6
(

1

4
− ε
)
· 2N.

As a result,

corr[1, T] =
|D|
|||[1, T]|||

6
1

4
− ε,

where the second step uses Lemma 25.
Assumption 2) states that

Tsubs +
3

4
Toos 6

(
1

4
− ε
)
T,

where Tsubs and Toos denote the total number of substitution at-
tacks and the total number of out-of-sync attacks, respectively.
Straightforward manipulations now reveal that

Tsubs + Toos

T + Toos
6

1

4
− ε

2
.

By definition,
|D| = Tsubs + Toos.

On the other hand, the defining equation (35) of virtual
length reveals that |||Z||| for any set Z is the total number of
transmissions in Z plus the total number of out-of-sync attacks
in Z. In particular,

|||[1, T]||| = T + Toos.

The last three equations immediately give (47).

G. Finish times

Let e1, e2, . . . , en be the edges of the unique root-to-leaf
path in X ∪ Y, listed in increasing order of depth. For i =
1, 2, . . . , n, define fi to be the index of the first transmission
when ei is sent (whether or not that transmission is subject to
an attack). If ei is never sent, we define fi =∞. For notational
convenience, we also define f0 = f−1 = f−2 = · · · = 0.
Recall from the description of the interactive coding scheme
that Alice never sends an edge e unless she has previously

18

sent all proper predecessors of e in X , and analogously for
Bob. This gives

f1 6 f3 6 f5 6 · · · ,
f2 6 f4 6 f6 6 · · · .

The overall sequence f1, f2, f3, f4, f5, f6, . . . need not be in
sorted order, however, due to interference by the adversary.
We abbreviate

fi = max{0, f1, f2, . . . , fi}.

By basic arithmetic,

[fi−1, fi) = [fi−1, fi), i = 1, 2, . . . , n. (48)

We now bound the virtual length of any such interval in terms
of the number of bad transmissions in it, thereby showing that
Alice and Bob make rapid progress as long as they do not
experience too many attacks.

Lemma 29: For any integers i and t with fi−1 6 t < fi,

|||[fi−1, t]||| 6 2|B|[fi−1,t]
+ 3. (49)

Proof: We will only treat the case of i odd; the proof for
even i can be obtained by swapping the roles of Alice and
Bob below.

Consider any transmission j ∈ E′ ∩ [fi−1, fi). Lemma 21
ensures that on receipt of transmission j, Alice is able to
correctly recover the set of edges that Bob has sent her by
that time, which includes e2, e4, e6, . . . , ei−1. At that same
time, Alice has sent Bob e1, e3, e5, . . . , ei−2 but not ei, as
one can verify from j ∈ [fi−1, fi). Therefore, the arrival of
transmission j causes Alice either to exit or to immediately
send ei. Either way, the interval [fi−1, fi) does not contain
any transmissions numbered j+1 or higher. We conclude that
there is at most one transmission in E′ ∩ [fi−1, fi), and in
particular

|E′|[fi−1,t]
6 1.

This upper bound directly implies (49) by Lemma 27.

H. The progress lemma

We have reached the technical centerpiece of our analysis.
The result that we are about to prove shows that any suffi-
ciently long execution of the interactive coding scheme with a
sufficiently low virtual corruption rate allows Alice and Bob
to exchange all the n edges of the unique root-to-leaf path
in X ∪ Y, and moreover this progress is not “undone” by any
subsequent attacks by the adversary. The proof uses amortized
analysis in an essential way.

Lemma 30 (Progress lemma): Let t ∈ {1, 2, . . . , T} be given
with

|||[1, t]||| > n+ 2

α
, (50)

corr[1, t] 6
1

4
− α. (51)

Then there is an integer t∗ 6 t such that

[fn, t
∗) ∩ E′ 6= ∅, (52)

[fn, t
∗) ∩ E′′ 6= ∅, (53)

∆(S′[i, t], R′[i, t]) < 1− α, i = 1, 2, . . . , t∗, (54)
∆(S′′[i, t], R′′[i, t]) < 1− α, i = 1, 2, . . . , t∗. (55)

Proof: Equations (54) and (55) hold vacuously for t∗ = 0.
In what follows, we will take t∗ ∈ {0, 1, 2, . . . , t} to be the
largest integer for which (54) and (55) hold. For the sake
of contradiction, assume that at least one of the remaining
desiderata (52), (53) is violated, whence

|||[fn, t∗)||| 6 2|B|[fn,t∗) + 1 (56)

by Lemma 27. The proof strategy is to show that (56) is
inconsistent with the hypothesis of the lemma. To this end, let
n∗ ∈ {0, 1, 2, . . . , n} be the largest integer such that fn∗ 6 t∗.
Then we have the partition

[0, t] = [f0, f1) ∪ [f1, f2) ∪ · · ·
∪ [fn∗−1, fn∗) ∪ [fn∗ , t

∗) ∪ {t∗} ∪ (t∗, t].

The bulk of our proof is concerned with bounding the virtual
length of each of the intervals on the right-hand side.

To begin with,

|||[fi−1, fi)||| = |||[fi−1, fi)|||
6 2|B|[fi−1,fi)

+ 3

6 2|B|[fi−1,fi)
+ 3 (57)

for any i = 1, 2, . . . , n∗, where the first and third steps
use (48), and the second step follows from Lemma 29. Next,
the upper bound

|||[fn∗ , t∗)||| 6 2|B|[fn∗ ,t∗) + 3 (58)

follows from Lemma 29 if n∗ < n and from (56) if n∗ =
n. The virtual length of the singleton interval {t∗} can be
bounded from first principles:

|||{t∗}||| 6 2. (59)

Finally, recall from the definition of t∗ that either
max{∆(S′[t∗ + 1, t], R′[t∗ + 1, t]), ∆(S′′[t∗ + 1, t], R′′[t∗ +
1, t])} > 1− α or t∗ = t, leading to

|||(t∗, t]||| 6 4

1− α
|D|(t∗,t] + 1 (60)

by Lemma 26 in the former case and trivially in the latter.
Putting everything together, we obtain

|||[1, t]|||

6 2|B|[0,t∗) + 3(n∗ + 1) + 2 +
4

1− α
|D|(t∗,t] + 1

6
4

1− α
|D|[0,t∗) + 3(n∗ + 1) + 2 +

4

1− α
|D|(t∗,t] + 1

6
4

1− α
|D|[0,t] + 3n+ 6

6
4

1− α
|D|[0,t] + 3α|||[1, t]|||, (61)

19

where the first step is the result of adding (57)–(60), the second
step applies Lemma 23, and the final step uses (50). Since
0 < α < 1, the conclusion of (61) is equivalent to

corr[1, t] >
(1− 3α)(1− α)

4
,

which is inconsistent with (51). We have obtained the desired
contradiction and thereby proved that t∗ satisfies each of the
properties (52)–(55).

I. Finishing the proof

We have reached a “master theorem,” which gives a suf-
ficient condition for Alice and Bob to assign the correct
value to their corresponding copies of the out variable. Once
established, this result will allow us to easily finish the proof
of Theorem 17.

Theorem 31: Consider a point in time when Alice updates
her out variable, and fix a corresponding integer t 6 T such
that 6 ∗(R′[1, t]) is the complete sequence of symbols that Alice
has received by that time. Assume that

|||[1, t]||| > n+ 2

α
, (62)

corr[1, t] 6
1

4
− α. (63)

Then as a result of the update, out is assigned the leaf vertex
in the unique root-to-leaf path in X∪Y. An analogous theorem
holds for Bob.
Observe that Theorem 31 makes no assumption as to the actual
timing of the update to out. It may happen that the update
takes place in response to the tth transmission; but it may also
take place significantly earlier, due to out-of-sync attacks.

Proof of Theorem 31: We will only prove the claim
for Alice; the proof of Bob is entirely analogous. Lemma 30
implies the existence of j′ ∈ E′ and j′′ ∈ E′′ such that

fn 6 j′ < t, (64)

fn 6 j′′ < t, (65)
∆(S′[j′ + 1, t], R′[j′ + 1, t]) < 1− α, (66)
∆(S′′[j′′ + 1, t], R′′[j′′ + 1, t]) < 1− α. (67)

By the definition of E′ and E′′,

SD(S′[1, j′], R′[1, j′]) < 1− α, (68)
SD(S′′[1, j′′], R′′[1, j′′]) < 1− α. (69)

As a result,

SD∗(S′[1,j′])(S
′[1, t], R′[1, t])

= SD∗(S′[1,j′])(S
′[1, j′]S′[j′ + 1, t], R′[1, j′]R′[j′ + 1, t])

6 max{SD∗(S′[1,j′])(S
′[1, j′], R′[1, j′]),

∆(S′[j′ + 1, t], R′[j′ + 1, t])}
6 max{SD(S′[1, j′], R′[1, j′]),

∆(S′[j′ + 1, t], R′[j′ + 1, t])}
< 1− α, (70)

where the second step is valid by Proposition 12, item 4); the
third step uses (6); and the final step is immediate from (66)
and (68).

When Alice updates her out variable, the sequence of
symbols that she has received is 6 ∗(R′[1, t]). By (70) and
Theorem 15,

DECODEC,α(6 ∗(R′[1, t])) � (6 ∗(S′[1, t]))6∗(S′[1,j′])
= 6 ∗(S′[1, j′]).

Therefore, just prior to updating out, Alice is able to correctly
recover the prefix 6 ∗(S′[1, j′]) of the sequence of symbols
sent to her by Bob. By Lemma 20, this means that she
correctly recovers the complete set of edges encoded by the
string 6 ∗(S′[1, j′]). By (64), this prefix 6 ∗(S′[1, j′]) contains the
encoding of every edge of Y that appears in the root-to-leaf
path in X∪Y . Moreover, every edge encoded in 6 ∗(S′[1, j′]) is
correct in that it is an element of Y . Alice’s pseudocode now
ensures that she assigns to out the leaf vertex on the unique
root-to-leaf path in X ∪ Y.

The proof for Bob is entirely analogous, with (65), (67),
(69), and j′′ playing the role of (64), (66), (68), and j′,
respectively.

We are now in a position to establish the main result of this
section.

Proof of Theorem 17: Recall that n = |π| denotes
the communication cost of the original protocol, and ε > 0
is a constant in the statement of Theorem 17. Consider the
interactive coding scheme given by Algorithms 2 and 3, with
parameters set according to

α =
ε

4
, (71)

N =

⌈
n+ 4

2α

⌉
. (72)

By (30), the coding scheme uses an alphabet of size at
most (|Σ| · n/ε)O(1/ε) = O(|Σ| · n)O(1) = O(|Σ| · |π|)O(1).
Furthermore, by (31), the combined number of transmissions
sent by Alice and Bob does not exceed 2N = O(n) = O(|π|).

It remains to show that when the communication stops,
out is set for both Alice and Bob to the leaf vertex on the
unique root-to-leaf path in X ∪Y. To this end, note from (71)
and Lemma 28 that

corr[1, T] 6
1

4
− 2α. (73)

By (72) and Lemma 25,

|||[1, T]||| > n+ 4

α
(74)

and therefore
|||[1, T − 1]||| > n+ 2

α
. (75)

Also,

corr[1, T − 1] 6
|||[1, T]|||
|||[1, T − 1]|||

· corr[1, T]

6

(
1 +

2

|||[1, T − 1]|||

)
· corr[1, T]

6

(
1 +

2α

n+ 2

)
·
(

1

4
− 2α

)
6

1

4
− α, (76)

20

where the third step uses (73) and (75). Now, consider the
last time that Alice and Bob update their copies of out. The
complete sequence of symbols that Alice has received at the
time of her last update is 6 ∗(R′[1, T − 1]) or 6 ∗(R′[1, T]).
Likewise, the complete sequence of symbols that Bob has
received at the time of his last update is 6 ∗(R′′[1, T − 1]) or
6 ∗(R′′[1, T]). By (73)–(76) and Theorem 31, both players set
out to the leaf vertex in the unique root-to-leaf path in X ∪Y.
This completes the proof of Theorem 17.

V. A CODING SCHEME WITH A CONSTANT-SIZE ALPHABET

In this section, we will adapt the proof of Theorem 17 to
use an alphabet of constant size. This modification will yield
the main result of this paper (Theorems 1 and 2), which we
restate here for the reader’s convenience.

Theorem 32: Fix an arbitrary constant ε > 0, and let π be
an arbitrary protocol with alphabet Σ. Then there exists an
interactive coding scheme for π with alphabet size O(1) and
communication cost O(|π| log |Σ|) that tolerates

1) corruption rate 1
4 − ε;

2) any normalized corruption rate (εsubs, εoos) such that
εsubs + 3

4εoos 6 1
4 − ε.

In Section V-H, we further generalize Theorem 32, item 1)
to the setting when Alice and Bob need to be ready with
their answers by a certain round (based on each player’s own
counting) rather than when the communication stops. In that
setting, too, our interactive coding scheme is optimal and
matches the lower bound due to Braverman et al. [5]. At a
high level, our proofs of Theorem 32 and its generalization
are similar to the proof of Theorem 17 in the previous section,
and we will be able to reuse most of the auxiliary machinery
developed there. The principal point of departure is a new
way of encoding and transferring edges, which in turn requires
subtle modifications to the amortized analysis.

A. Edge representation and transfer

We may assume without loss of generality that π is in
canonical form, which can be achieved for any protocol at
the expense of doubling its communication cost. Canonical
form allows us to identify Alice’s input with a set X of odd-
depth edges of the protocol tree for π, and Bob’s input with
a set Y of even-depth edges. Execution of π corresponds to
following the unique root-to-leaf path in X ∪Y, whose length
we denote by

n = |π|.

Recall that our previous interactive coding scheme in Sec-
tion IV involved Alice and Bob sending each other edges
from their respective input sets X and Y , with each transmis-
sion representing precisely one such edge. The new coding
scheme also amounts to Alice and Bob exchanging edges
from their respective input sets. This time, however, any given
transmission will contain information about as many as Λ2

edges, where Λ = Λ(ε) > 0 is a constant to be chosen later.
Moreover, to accommodate the size restriction on the alphabet,
the encoding of any given edge will now be split across

multiple transmissions. We say that a transmission fulfills an
edge e if it carries the last bit of e’s encoding.

Our approach to the transfer of edges is inspired by the
interactive coding schemes with constant-size alphabets due
to Braverman and Rao [6] and Braverman et al. [5]. We adapt
their transfer in several ways to support our more general
setting and to make the overall proof simpler. A detailed
technical exposition follows.

Edge encoding: We will keep the policy that Alice does
not start sending an edge e unless she has already fulfilled
all predecessors of e in X , and likewise for Bob. This makes
it possible for the sender to encode an edge e by referring
to the previously transmitted grandparent of e. Specifically,
an edge is now encoded as a triple (m, j, σ), where m is
the number of transmissions sent by the sender since his or
her most recent transmission that fulfilled the grandparent of
e; the index j ∈ {1, 2, 3, . . . ,Λ2} identifies that grandparent
among the up to Λ2 edges featured in that transmission; and
σ ∈ Σ×Σ identifies e relative to that grandparent. As a base
case, an edge of depth 1 or 2 is encoded by a triple (m, j, σ)
where m is the number of transmissions sent by the sender
since the beginning of time, and j is ignored. Note that how an
edge is encoded is highly context-sensitive in that it depends
on previous transmissions by the sender. As a result, whenever
we speak of the encoding of an edge e, we are referring to
the encoding of e at a particular time that will be clear from
the context.

Ignoring inessential details, the key to this encoding scheme
is that an edge e is specified by indicating how long ago its
grandparent was fulfilled. This idea, introduced in [6] and used
more recently in [5], helps keep encodings short on average.

Chunking: A constant-size alphabet makes it in general
impossible to deliver the entire encoding of an edge in a single
transmission. Instead, we split the encoding of every edge
into chunks. A chunk contains a single bit of the encoding
of the edge as well as 3 bits of metadata. Thus, the number
of chunks needed to transfer an edge is equal to the bit length
of e’s encoding. Alice and Bob each maintain data structures
called encoding and numBitsSent, indexed by edges. These
data structures store, for each of the edges currently being
transferred, its encoding and the number of bits sent so far.

Parallelism: Rather than send edges one by one, each player
will send up to Λ2 edges in parallel. To see the intuitive
reason for doing so, consider the transfer of a typical edge e,
which spans multiple transmissions. As Alice sends e chunk by
chunk to Bob, she simultaneously receives information from
him, which in turn may lead her to believe that she should be
sending an edge other than e. The problem is, she can never
be sure! Simply aborting the transfer of e is wasteful if e later
turns out to be the right edge to send. Instead, we allow transfer
of several edges in parallel and use an additional, credit-based
mechanism for identifying and aborting unpromising transfers.

Specifically, each player maintains an ordered list L of
edges that he or she is currently transferring. New edges are
inserted in L at the front rather than back, reflecting that view
that new information should be prioritized over old. To prepare
a transmission, a player looks at the first Λ2 edges in L and
takes a chunk of each. If L has fewer than Λ2 edges, the player

21

simply takes a chunk of each edge in L. The concatenation
of these chunks, ordered the same way as the corresponding
edges in L, forms a page, which we view as a symbol from an
auxiliary alphabet Σin. Since an edge chunk is a 4 bits long,
the size of Σin is bounded by a constant:

|Σin| =
Λ2∑
i=0

24i =
16Λ2+1 − 1

15
. (77)

Credit: As a crucial component of the transfer scheme,
Alice and Bob each maintain a data structure called credit.
This data structure is indexed by edges and stores the amount
of “funds” available to pay for the transfer of any given edge
e. The credit of every edge is initialized to 0 at the beginning,
and remains nonnegative from then on. Every receive-send
cycle identifies an edge e to send, which then gets a credit
increase of Λ and is additionally inserted in L unless it is
already there. Any time an edge chunk is sent, the credit of
the corresponding edge is decreased by 1. An edge remains
in L until its credit reaches 0 or until its last chunk is sent,
whichever comes first. At that point, the edge is removed from
L.

Metadata: The purpose of the metadata in each edge
chunk is to allow the receiver to correctly piece together the
encodings of the edges. A chunk for an edge e is always
prepared at send time rather than in advance and includes the
following four bits: the next bit of the encoding of e; a bit
to indicate if this is the first chunk for e; a bit to indicate if
this is the last chunk for e; and a bit to indicate if e’s credit
has reached zero. The last two bits alert the receiver to the
removal of e from the sender’s edge list.

B. The simulation

Algorithm 4 gives the pseudocode to support our edge
encoding and transfer scheme. The pseudocode is identical
for Alice and Bob. In the pseudocode, ◦ denotes string
concatenation, |L| denotes the number of edges in L, and
L[i] denotes the ith edge in L. The edge operations are as
follows.

1) ADDEDGE is executed once by each player during his
or her receive-send cycle. As an argument, it receives an
edge which that player wants to send next. If e is already
on the player’s edge list, ADDEDGE simply increments
e’s credit by Λ. If not, ADDEDGE increments e’s credit
by Λ, computes an encoding of e relative to the player’s
current transmission count, and adds e to the edge list
ahead of any existing edges.

2) NEXTCHUNK receives as an argument an edge e and
returns the next 4-bit chunk of that edge, based on the
stored encoding of e and the number of bits of e’s
encoding sent so far. This procedure uses numBitsSent(e),
credit(e), and encoding(e) to correctly set the meta-
data for the chunk. It then updates numBitsSent(e) and
credit(e) to reflect the remaining number of bits to send
and the edge’s available credit.

3) NEXTPAGE is the procedure that assembles the next page
to send. The page is made up of at most Λ2 chunks,
one for each of the first Λ2 edges on the edge list.

Algorithm 4: Edge operations

1 Global variables: encoding, numBitsSent, credit, L

2 Procedure ADDEDGE(e, i)
3 credit(e)← credit(e) + Λ
4 if e /∈ L then
5 encoding(e)← encoding of e based on current

transmission count i
6 numBitsSent(e)← 0
7 prepend e to L, ahead of any existing edges
8 end
9 Procedure NEXTCHUNK(e)

// Update edge statistics
10 numBitsSent(e)← numBitsSent(e) + 1
11 credit(e)← credit(e)− 1

// Compute edge chunk
12 return (encoding(e))numBitsSent(e)
13 ◦ I[numBitsSent(e) = 1]
14 ◦ I[numBitsSent(e) = |encoding(e)|]
15 ◦ I[credit(e) = 0]

16 Procedure NEXTPAGE()
17 page← NEXTCHUNK(L[1])
18 ◦ NEXTCHUNK(L[2])
19 ◦ · · ·
20 ◦ NEXTCHUNK(L[min{Λ2, |L|}])

// Clean up the edge list
21 foreach e ∈ L do
22 if credit(e) = 0 or

numBitsSent(e) = |encoding(e)| then
23 remove e from L
24 end
25 end
26 return page

The chunks are prepared using NEXTCHUNK. Once the
page is assembled, NEXTPAGE updates the edge list by
removing edges that have been fully sent or have no credit
left.

The overall interactive coding scheme is given by Algorithms 5
and 6 for Alice and Bob, respectively. The main novelty
relative to the scheme of Section IV are the calls to ADDEDGE
and NEXTPAGE, which a player executes as soon as he or
she has identified an edge e to send. Apart from that, the
remarks made in Section IV apply here in full. In particular,
α = α(ε) ∈ (0, 1) and N = N(n, α) are parameters to be
chosen later. We set

Λ =

⌈
2

α

⌉
(78)

and fix an arbitrary α-good code C : Σ∗in → Σ∗out whose
existence is ensured by Theorem 9. That theorem implies, in
view of (77) and (78), that

|Σout| 6 2O(1/α3). (79)

Alice and Bob use C to encode every transmission. In particu-
lar, the encoded symbol from Σout at any given point depends

22

Algorithm 5: Coding scheme for Alice

Input: X (set of Alice’s edges)
1 L← ∅

2 credit(e)← 0 for every edge e

3 e← the edge in X incident to the root

4 ADDEDGE(e, 1)

5 page← NEXTPAGE()

6 encode and send page

7 foreach i = 1, 2, 3, . . . , N do

8 receive a symbol ri ∈ Σout

9 s← DECODEC,α(r1r2 . . . ri)

10 interpret s as a sequence B of even-depth edges

11 `← maximum length of a rooted path in X ∪B

12 compute the shortest prefix of B s.t. X ∪B contains
a rooted path of length `, and let P be the rooted
path so obtained

13 out← deepest vertex in P

14 if i 6 N − 1 then
15 e← the deepest edge in P ∩X whose proper

predecessors in X have all been sent

16 ADDEDGE(e, i+ 1)

17 page← NEXTPAGE()

18 encode and send page
19 end
20 end

not only on the symbol from Σin being transmitted but also on
the content of the previous transmissions by the sender. The
decoding is again done using the DECODEC,α algorithm of
Theorem 15. Note from the pseudocode that Alice and Bob
send at most N transmissions each.

It remains to elaborate on the decoding and interpretation
steps in the interactive coding scheme. To do so, we first prove
that the sequence of pages sent by one of the players at any
given point reveals the sequence of edges that that player has
fulfilled so far.

Lemma 33: Consider an arbitrary point in time, and let
p1, p2, . . . , pt ∈ Σin be the sequence of pages sent by one
of the players so far. Then that sequence uniquely identifies
the corresponding sequence of edges e1, e2, . . . , et′ fulfilled by
that player.

Proof: We first reconstruct as completely as possible
the sender’s state at the times when each of the pages
p1, p2, . . . , pt has just been assembled. Specifically, we de-
termine the length of the sender’s edge list, the transmission
status of every edge on the edge list (in progress, aborted,
or fulfilled), and the corresponding part of the encoding
transferred for every edge so far. This reconstruction pro-

Algorithm 6: Coding scheme for Bob

Input: Y (set of Bob’s edges)
1 L← ∅

2 credit(e)← 0 for every edge e

3 foreach i = 1, 2, 3, . . . , N do

4 receive a symbol ri ∈ Σout

5 s← DECODEC,α(r1r2 . . . ri)

6 interpret s as a sequence A of odd-depth edges

7 `← maximum length of a rooted path in Y ∪A

8 compute the shortest prefix of A s.t. Y ∪A contains
a rooted path of length `, and let P be the rooted
path so obtained

9 out← deepest vertex in P

10 e← the deepest edge in P ∩ Y whose proper
predecessors in Y have all been sent

11 ADDEDGE(e, i)

12 page← NEXTPAGE()

13 encode and send page
14 end

cess involves working inductively through the page sequence
p1, p2, . . . , pt and using the metadata to identify when an edge
is new, in progress, aborted, or fulfilled. Recall that there is at
most one new edge per page, and it is always inserted at the
front of the edge list.

The first stage reconstructs the complete list of edge
encodings sent so far by the sender, along with the final
status of each encoding (in progress, aborted, or fulfilled),
and the start and end times of each fulfilled encoding.
We then interpret the fulfilled encodings as a sequence
(m1, j1, σ1), (m2, j2, σ2), . . . , (mt′ , jt′ , σt′) of edge represen-
tations. Using the end times of the fulfilled encodings and their
indices inside the pages than fulfilled them, we can reconstruct
the corresponding sequence of edges e1, e2, . . . , et′ via an
inductive process analogous to that in Lemma 18.

With Lemma 33 in hand, the decoding and interpretation
steps in lines 9–10 for Alice and lines 5–6 for Bob are imple-
mented the same way they were for a large alphabet. Specifi-
cally, the decoding step produces a codeword s of C, which by
Fact 8 corresponds to a unique string in Σ∗in. This string is by
definition a sequence of pages p1, p2, p3, . . . , from which the
receiving party can reconstruct the corresponding sequence of
fulfilled edges using the inductive procedure of Lemma 33. It
may happen that the page sequence p1, p2, p3, . . . is syntacti-
cally malformed; in that case, the receiving party interrupts the
interpretation process at the longest prefix of p1, p2, p3, . . . that
corresponds to a legitimate sequence of edges. This completes
the interpretation step, yielding a sequence of edges A for Bob
and B for Alice.

Analogous to the interactive coding scheme of Section IV,

23

Alice and Bob each maintain a variable called out. In Sec-
tions V-C–V-G below, we will examine an arbitrary but fixed
execution of the interactive coding scheme. In particular,
we will henceforth consider the inputs X and Y and the
adversary’s actions to be fixed. We allow any behavior by
the adversary as long as it meets one of the criteria 1), 2) in
Theorem 32. We will show that as soon as the communication
stops, out is set for both Alice and Bob to the leaf vertex of the
unique root-to-leaf path in X∪Y . This will prove Theorem 32.

C. Fundamental notions and facts

We adopt the notation and definitions of Sections IV-B–IV-F
in their entirety. These items carry over without any changes
because they pertain to the lowest level of abstraction (the
“data link layer,” as it were), which cannot distinguish between
the old and new interactive coding schemes. As a consequence,
all results proved in Sections IV-B–IV-F apply here in full,
with the exception are Lemmas 20 and 21 whose wording
needs to be clarified by replacing “sent edges” with “fulfilled
edges.” The result of this cosmetic modification is as follows.

Lemma 34: Let t ∈ {1, 2, . . . , T} be given. Then:

1) the string 6 ∗(S′[1, t]) uniquely identifies the sequence of
protocol tree edges that Bob fulfills over the course of
transmissions 1, 2, . . . , t;

2) the string 6 ∗(S′′[1, t]) uniquely identifies the sequence of
protocol tree edges that Alice fulfills over the course of
transmissions 1, 2, . . . , t.

Proof: By symmetry, it suffices to prove the former claim.
By Fact 8, the codeword 6 ∗(S′[1, t]) ∈ Σ∗out corresponds to
a unique string in Σ∗in, which is the sequence of pages that
Bob sends Alice over the course of the first t transmissions.
By Lemma 33, this sequence of pages uniquely identifies the
corresponding fulfilled edges.

Lemma 35: Let t ∈ {1, 2, . . . , T} be given.

1) If t ∈ E′, then on receipt of transmission t, Alice is able
to correctly recover the complete sequence of edges that
Bob has fulfilled by that time.

2) If t ∈ E′′, then on receipt of transmission t, Bob is able
to correctly recover the complete sequence of edges that
Alice has fulfilled by that time.

Proof: By symmetry, it again suffices to prove the former
claim. Let t ∈ E′. Then by definition, SD(S′[1, t], R′[1, t]) <
1 − α. Taking k = ∞ in Theorem 15, we conclude that
DECODEC,α(6 ∗(R′[1, t])) = 6 ∗(S′[1, t]). This means that on
receipt of transmission t, Alice is able to correctly recover the
entire codeword 6 ∗(S′[1, t]) that Bob has sent her so far. By
Lemma 34, this in turn makes it possible for Alice to correctly
identify the corresponding sequence of fulfilled edges.

D. Full pages

Recall that a page can contain at most Λ2 edge chunks. If
a page contains exactly Λ2 chunks, we call it full. We define
F ′ ⊆ {1, 2, . . . , T} as the set of transmissions where Alice
sends a full page, and analogously F ′′ ⊆ {1, 2, . . . , T} as the

set of transmissions where Bob sends a full page. In other
words,

F ′ = {i : S′′[i, i] is a full page},
F ′′ = {i : S′[i, i] is a full page}.

We abbreviate
F = F ′ ∪ F ′′.

The following lemma, due to Braverman et al. [5, Lemma
D.1], shows that full pages are relatively uncommon.

Proposition 36 (Braverman et al.): For any interval J such
that 1 ∈ J,

|F |J 6
|J ∩ {1, 2, 3, . . . , T}|

Λ
.

Proof (adapted from Braverman et al.): Since F ⊆
{1, 2, . . . , T}, the proposition is equivalent to the following
statement:

|F ∩ {1, 2, . . . , t}| 6 t

Λ

for all 1 6 t 6 T. The proof proceeds by a potential argument.
The potential function to consider is the sum of the credit
values of Alice’s edges. This quantity is always nonnegative
and is initially zero. Any full page sent by Alice causes a
decrement of the credit counter for each edge in the page,
decreasing the potential function by Λ2. On the other hand,
any increase in the potential function is due to the arrival of a
symbol (i.e., a good event or insertion addressed to Alice) and
is precisely Λ. Since the potential function is nonnegative, we
conclude that

Λ|F ′ ∩ {1, 2, . . . , t}| 6 |(G′ ∪ I ′) ∩ {1, 2, . . . , t}|.

Analogously,

Λ|F ′′ ∩ {1, 2, . . . , t}| 6 |(G′′ ∪ I ′′) ∩ {1, 2, . . . , t}|.

Therefore,

Λ|F ∩ {1,2, . . . , t}|
6 Λ|F ′ ∩ {1, 2, . . . , t}|+ Λ|F ′′ ∩ {1, 2, . . . , t}|
6 |(G′ ∪ I ′) ∩ {1, 2, . . . , t}|

+ |(G′′ ∪ I ′′) ∩ {1, 2, . . . , t}|. (80)

Items 1), 2), and 7) of Lemma 19 imply that G′, G′′, I ′, I ′′

are pairwise disjoint. Therefore, the sum on the right-hand
side of (80) does not exceed t.

E. Finish times

We adopt the notation and definitions of Section IV-G,
and review them here for the reader’s convenience. Let
e1, e2, . . . , en be the edges of the unique root-to-leaf path
in X ∪ Y, listed in increasing order of depth. Recall that
a transmission fulfills an edge e if the corresponding page
sent by the sender carries the last bit of an encoding of e.
For i = 1, 2, . . . , n, define fi to be the index of the first
transmission that fulfills ei (whether or not that transmission
is subject to an attack). If ei is never fulfilled, we set fi =∞.
For notational convenience, we also define f0 = f−1 = f−2 =
· · · = 0. Recall from the description of the interactive coding

24

scheme that Alice never starts sending an edge e unless she
has finished sending all proper predecessors of e in X , and
analogously for Bob. This gives

f1 6 f3 6 f5 6 · · · ,
f2 6 f4 6 f6 6 · · · .

The overall sequence f1, f2, f3, f4, f5, f6, . . . need not be in
sorted order, however, due to interference by the adversary.
We abbreviate

fi = max{0, f1, f2, . . . , fi}.

By basic arithmetic,

[fi−1, fi) = [fi−1, fi), i = 1, 2, . . . , n. (81)

Analogous to the analysis in Section IV-G, we need to bound
the virtual length of each interval [fi−1, fi). To this end, we
first bound the bit length of any encoding of ei.

Lemma 37: For given integers i and t, suppose that an
encoding of ei is computed prior to the sending of transmission
t. Then that encoding has bit length at most

dlog(t− fi−2)e+ d2 log Λ|Σ|e.

Proof: Recall that ei is encoded as a triple (m, j, σ),
where m is the number of transmissions sent by the sender
since his or her page that contained the last bit of ei−2 (for
i > 3) or since the beginning of time (for i = 1, 2); j ∈
{1, 2, . . . ,Λ2} identifies ei−2 inside that page; and σ ∈ Σ×Σ
identifies ei relative to ei−2. The pair (j, σ) takes on Λ2|Σ|2
distinct values and can therefore be represented by a binary
string of fixed length d2 log Λ|Σ|e. The remaining component
m is a nonnegative integer of magnitude at most t− fi−2− 1
and can therefore be represented by a binary string of length
dlog(t − fi−2)e in the usual manner: ε, 1, 10, 11, 100, . . . for
0, 1, 2, 3, 4, . . . , respectively.

We are now in a position to analyze the virtual length of
any interval [fi−1, fi). The lemma that we are about to prove
is a counterpart of Lemma 29.

Lemma 38: For any t ∈ {1, 2, . . . , T} and i with fi−1 6
t < fi,

|||[fi−1, t]||| 6
2Λ

Λ− 1
|B|[fi−1,t]

+ 2|F |[fi−1,t]

+ 2dlog(t− fi−2)e+ 2d2 log 2Λ|Σ|e.

Proof: We will only treat the case of i odd; the proof for
even i can be obtained by swapping the roles of Alice and
Bob below.

For an edge e of the protocol tree, let credit(e, j) denote the
value of credit(e) on Alice’s side at the moment when trans-
mission j enters the communication channel, i.e., immediately
after the sender of transmission j has executed NEXTPAGE.
For notational convenience, we also define credit(e, 0) = 0 for
all e. Let s ∈ [fi−1, t + 1] be the smallest integer such that
credit(ei, j) > 0 for j = s, s+ 1, . . . , t. Then

[fi−1, t] ⊆ [fi−1, s− 1) ∪ [s− 1, s) ∪ [s, t].

With this in mind, we complete the proof of the lemma by
bounding the virtual length of each interval on the right-hand

side and summing the resulting bounds. Key to our analysis
are the following two claims.

Claim 39: |E′|[fi−1,s−1) 6 |B′|[fi−1,s−1)/(Λ− 1).

Proof: Consider any transmission j ∈ E′ ∩ [fi−1, t).
Lemma 35 ensures that on receipt of transmission j, Alice
is able to correctly recover the complete set of edges that
Bob has finished sending her by that time, which includes
e2, e4, e6, . . . , ei−1. At that same time, Alice has finished
sending Bob e1, e3, e5, . . . , ei−2 but not ei, as one can verify
from fi−1 6 j < t < fi. Therefore, the arrival of transmission
j causes Alice to increase the credit of ei by Λ in the call to
ADDEDGE. The subsequent call to NEXTPAGE either leaves
ei’s credit unchanged or decreases it by 1.

We now return to the proof of the claim. If [fi−1, s− 1) =
∅, the claim holds trivially. In the complementary case, the
definition of s ensures that

credit(ei, s− 1) = 0. (82)

By the previous paragraph, the net effect of an incoming
excellent transmission in the interval [fi−1, t) is to increase
ei’s credit by at least Λ−1, whereas none of the other incoming
symbols decrease ei’s credit by more than 1. Since credit is
always nonnegative, we conclude from (82) that the number of
incoming excellent transmissions in the interval [fi−1, s− 1)
is at most a 1/(Λ − 1) fraction of the number of Alice’s
other incoming symbols in that interval. Formulaically, this
conclusion translates to

|E′|[fi−1,s−1) 6
1

Λ− 1
|(G′ ∪ I ′) \ E′|[fi−1,s−1),

which is equivalent to the claimed inequality by the definition
of B′.

Claim 40: |G′′ ∪ D′′|[s,t] 6 |F ′|[s,t] + dlog(t − fi−2)e +
d2 log Λ|Σ|e.

Proof: By the choice of s, the credit of ei is positive when
transmissions s, s+1, . . . , t enter the communication channel.
Since Alice does not fulfill ei before or during transmission
t < fi, we conclude that ei is continuously present on Alice’s
edge list as transmissions s, s+ 1, . . . , t are prepared by their
respective senders. In particular, every transmission among
s, s + 1, . . . , t that is sent by Alice must contain a bit of the
encoding of ei unless it is a full page. We conclude that

|G′′ ∪D′′|[s,t] 6 |F ′|[s,t] + L,

where by definition G′′ ∪D′′ is the set of transmissions sent
by Alice, F ′ is the set of transmissions sent by Alice that are
full pages, and L stands for the bit length of ei’s encoding.
This completes the proof in view of the upper bound on L in
Lemma 37.

It remains to put everything together. We have

|||[fi−1, s− 1)|||
6 2(|B|[fi−1,s−1) + |E′|[fi−1,s−1)) + 1

6 2

(
|B|[fi−1,s−1) +

1

Λ− 1
|B′|[fi−1,s−1)

)
+ 1

6
2Λ

Λ− 1
|B|[fi−1,s−1) + 1, (83)

25

where the first and second steps follow from Lemma 27 and
Claim 39, respectively. Similarly,

|||[s, t]||| 6 2(|B|[s,t] + |E′′|[s,t]) + 1

6 2(|B|[s,t] + |G′′|[s,t]) + 1

6 2(|B|[s,t] + |F ′|[s,t] + dlog(t− fi−2)e
+ d2 log Λ|Σ|e) + 1

6 2(|B|[s,t] + |F |[fi−1,t]
+ dlog(t− fi−2)e

+ d2 log Λ|Σ|e) + 1, (84)

where the first and second steps follow from Lemma 27 and
Claim 40, respectively. Finally,

|||[s− 1, s)||| = |||{s− 1}|||
6 2. (85)

Adding the bounds in (83)–(85) proves the lemma.

F. The progress lemma

We have reached the technical centerpiece of our analysis,
which is the counterpart of Lemma 30 for a large alphabet.
Analogous to that earlier lemma, the result that we are
about to prove shows that any sufficiently long execution of
the interactive coding scheme with a sufficiently low virtual
corruption rate allows Alice and Bob to exchange all the n
edges of the unique root-to-leaf path in X ∪ Y, and moreover
this progress is not “undone” by any subsequent attacks by the
adversary. Our exposition below emphasizes the similarities
between Lemma 30 and the new result.

Lemma 41 (Progress lemma): Let t ∈ {1, 2, . . . , T} be given
with

|||[1, t]||| > cn

α
log
|Σ|
α
, (86)

corr[1, t] 6
1

4
− α, (87)

where c > 1 is a sufficiently large absolute constant. Then
there is an integer t∗ 6 t such that

[fn, t
∗) ∩ E′ 6= ∅, (88)

[fn, t
∗) ∩ E′′ 6= ∅, (89)

∆(S′[i, t], R′[i, t]) < 1− α, i = 1, 2, . . . , t∗, (90)
∆(S′′[i, t], R′′[i, t]) < 1− α, i = 1, 2, . . . , t∗. (91)

Proof: Equations (90) and (91) hold vacuously for t∗ = 0.
In what follows, we will take t∗ ∈ {0, 1, 2, . . . , t} to be the
largest integer for which (90) and (91) hold. For the sake
of contradiction, assume that at least one of the remaining
desiderata (88), (89) is violated, whence

|||[fn, t∗)||| 6 2|B|[fn,t∗) + 1 (92)

by Lemma 27. The proof strategy is to show that (92) is
inconsistent with the hypothesis of the lemma. To this end, let
n∗ ∈ {0, 1, 2, . . . , n} be the largest integer such that fn∗ 6 t∗.
Then we have the partition

[0, t] = [f0, f1) ∪ [f1, f2) ∪ · · ·
∪ [fn∗−1, fn∗) ∪ [fn∗ , t

∗) ∪ {t∗} ∪ (t∗, t].

The bulk of our proof is concerned with bounding the virtual
length of each of the intervals on the right-hand side.

Abbreviate

M = 2d2 log 2Λ|Σ|e+ 2. (93)

Then

|||[fi−1, fi)||| = |||[fi−1, fi)|||

6
2Λ

Λ− 1
|B|[fi−1,fi)

+ 2|F |[fi−1,fi)

+ 2 log(fi − fi−2) +M

6
2Λ

Λ− 1
|B|[fi−1,fi)

+ 2|F |[fi−1,fi)

+ 2 log(fi − fi−2) +M (94)

for any i = 1, 2, . . . , n∗, where the first and third steps
use (81), and the second step follows from Lemma 38. Next,
the upper bound

|||[fn∗ , t∗)||| 6
2Λ

Λ− 1
|B|[fn∗ ,t∗) + 2|F |[fn∗ ,t∗)

+ 2 log(t∗ − fn∗−1) +M (95)

follows from Lemma 38 if n∗ < n and from (92) if n∗ =
n. The virtual length of the singleton interval {t∗} can be
bounded from first principles:

|||{t∗}||| 6 2. (96)

Finally, recall from the definition of t∗ that either
max{∆(S′[t∗ + 1, t], R′[t∗ + 1, t]), ∆(S′′[t∗ + 1, t], R′′[t∗ +
1, t])} > 1− α or t∗ = t, leading to

|||(t∗, t]||| 6 4

1− α
|D|(t∗,t] + 1 (97)

by Lemma 26 in the former case and trivially in the latter.

It remains to put together the upper bounds in (94)–(97).

26

We have

|||[1, t∗)||| (98)

6
2Λ

Λ− 1
|B|[0,t∗) + 2|F |[0,t∗) + (n∗ + 1)M

+ 2

n∗∑
i=1

log(fi − fi−2) + 2 log(t∗ − fn∗−1)

6
2Λ

Λ− 1
· 2

1− α
|D|[0,t∗) +

2t∗

Λ
+ (n∗ + 1)M

+ 2

n∗∑
i=1

log(fi − fi−2) + 2 log(t∗ − fn∗−1)

6
2Λ

Λ− 1
· 2

1− α
|D|[0,t∗) +

2t∗

Λ
+ (n∗ + 1)M

+ 2(n∗ + 1) log

∑n∗

i=1(fi − fi−2) + (t∗ − fn∗−1)

n∗ + 1

=
2Λ

Λ− 1
· 2

1− α
|D|[0,t∗) +

2t∗

Λ
+ (n∗ + 1)M

+ 2(n∗ + 1) log
fn∗ + t∗

n∗ + 1

6
2Λ

Λ− 1
· 2

1− α
|D|[0,t∗) +

2t∗

Λ
+ (n∗ + 1)M

+ 2(n∗ + 1) log
2t∗

n∗ + 1

6
4

(1− α)2
|D|[0,t∗) + α|||[1, t]|||

+ 2(n∗ + 1) ·
⌈

1 + 2 log 2|Σ|
⌈

2

α

⌉⌉
+ 2(n∗ + 1) log

2|||[1, t]|||
n∗ + 1

6
4

(1− α)2
|D|[0,t∗) + 2α|||[1, t]||| − 3, (99)

where the first step follows from (94) and (95); the second
step applies Lemmas 23 and 36; the third step is valid by
the concavity of the logarithm function; the next-to-last step
is immediate from (78), (93), and t∗ 6 t 6 |||[1, t]|||; and the
last step follows from (86) and n∗ 6 n. Adding (96)–(99), we
obtain

|||[1, t]||| 6 4

(1− α)2
|D|[0,t] + 2α|||[1, t]|||,

or equivalently

corr[1, t] >
(1− 2α)(1− α)2

4
.

This conclusion is inconsistent with (87) since 0 < α < 1.
We have reached the desired contradiction and thereby proved
that t∗ satisfies each of the properties (88)–(91).

G. Finishing the proof

We have reached a “master theorem” analogous to Theo-
rem 31 for a large alphabet, which gives a sufficient condition
for Alice and Bob to assign the correct value to their corre-
sponding copies of the out variable. Once established, this new
result will allow us to easily finish the proof of Theorem 32.

Theorem 42: Consider a point in time when Alice updates
her out variable, and fix a corresponding integer t 6 T such

that 6 ∗(R′[1, t]) is the complete sequence of symbols that Alice
has received by that time. Assume that

|||[1, t]||| > cn

α
log
|Σ|
α
, (100)

corr[1, t] 6
1

4
− α, (101)

where c > 1 is the absolute constant from Lemma 41. Then
as a result of the update, out is set to the leaf vertex in the
unique root-to-leaf path in X∪Y. An analogous theorem holds
for Bob.

Proof: Analogous to the proof of Theorem 31 for a
large alphabet, with the difference that the newly obtained
Lemmas 34 and 41 should be used instead of their large-
alphabet counterparts (Lemmas 20 and 30).

We now establish the main result of this paper.
Proof of Theorem 32: The proof is nearly identical to

that for a large alphabet (Theorem 17). Recall that n = |π|
denotes the communication cost of the original protocol, and
ε > 0 is a constant in the statement of Theorem 17. Consider
the interactive coding scheme given by Algorithms 5 and 6
with parameters set according to

α =
ε

4
, (102)

N =

⌈
cn

2α
log
|Σ|
α

⌉
+ 1, (103)

where c > 1 is the absolute constant from Lemma 41. Then
by (79), the interactive coding scheme uses an alphabet of size
at most 2O(1/ε3) = O(1). Furthermore, the combined number
of transmissions sent by Alice and Bob does not exceed 2N =
O(nε log |Σ|ε) = O(|π| log |Σ|).

It remains to show that when the communication stops, out
is set for both Alice and Bob to the leaf vertex on the unique
root-to-leaf path in X ∪ Y. To this end, recall from (102)
and Lemma 28 that

corr[1, T] 6
1

4
− 2α. (104)

By (103) and Lemma 25,

|||[1, T]||| > cn

α
log
|Σ|
α

+ 2 (105)

and therefore

|||[1, T − 1]||| > cn

α
log
|Σ|
α
. (106)

Also,

corr[1, T − 1] 6
|||[1, T]|||
|||[1, T − 1]|||

· corr[1, T]

6

(
1 +

2

|||[1, T − 1]|||

)
· corr[1, T]

6

(
1 +

2α

n

)
·
(

1

4
− 2α

)
6

1

4
− α, (107)

where the third step uses (104) and (106). Now, consider
the last time that Alice and Bob update their copies of out.
The complete sequence of symbols that Alice has received at

27

the time of her last update is 6 ∗(R′[1, T − 1]) or 6 ∗(R′[1, T]).
Likewise, the complete sequence of symbols that Bob has
received at the time of his last update is 6 ∗(R′′[1, T − 1]) or
6 ∗(R′′[1, T]). By (104)–(107) and Theorem 42, both players set
out to the leaf vertex in the unique root-to-leaf path in X ∪Y.

H. Generalization to early output

Following Braverman et al. [5], we now consider the setting
when Alice and Bob need to be ready with their answers by
a certain round (based on each player’s own counting) rather
than when the communication stops. Let Π be an interactive
coding scheme. We define the δ-early output for a player in
Π as the chronologically ordered sequence of the player’s first
δ|Π|/2 symbols sent (or all of them, if the player sends fewer
than δ|Π|/2 symbols) and first δ|Π|/2 symbols received (or all
of them, if the player receives fewer than δ|Π|/2 symbols). In
this early output model, Alice and Bob are still expected to run
their protocol to completion, which happens when one or both
of them have finished |Π|/2 rounds of communication. The
only difference is what information they use when computing
their answers. Both Definition 10 and Theorem 32, item 1)
generalize to the setting of early output, as follows.

Definition 43 (Coding scheme with early output): Let π be
a given protocol with input space X × Y . Protocol Π is an
interactive coding scheme for π with corruption rate ε and
δ-early output if:

1) Π has input space X × Y and is in canonical form;
2) there are functions f ′, f ′′ such that for any pair of inputs

X ∈ X and Y ∈ Y and any actions by an adversary
with corruption rate ε, Alice’s δ-early output a and Bob’s
δ-early output b satisfy f ′(a) = f ′′(b) = π(X,Y).

Theorem 44: Fix arbitrary constants ε > 0 and 0 < δ 6 1,
and let π be an arbitrary protocol with alphabet Σ. Then
there exists an interactive coding scheme for π with alphabet
size O(1) and communication cost O(|π| log |Σ|) with δ-early
output that tolerates corruption rate (1

4 − ε)δ.
Proof: Let n = |π| denote the communication cost of

the original protocol. Consider the interactive coding scheme
given by Algorithms 5 and 6 with parameters set according to

α =
ε

2
, (108)

N =

⌈
cn

αδ
log
|Σ|
α

+
3

αδ

⌉
, (109)

where c > 1 is the absolute constant from Lemma 41. Then
by (79), the interactive coding scheme uses an alphabet of size
at most 2O(1/ε3) = O(1). Furthermore, the combined number
of transmissions sent by Alice and Bob does not exceed 2N =
O(nεδ log |Σ|ε) = O(|π| log |Σ|).

It remains to show that each player’s δ-early output uniquely
determines the output of π. We will prove the following
much stronger statement: at any point in time when one of
the players has processed δ|Π|/2 = δN or more incoming
symbols, the variable out is set for both Alice and Bob to the
leaf vertex of the unique root-to-leaf path in X ∪ Y. This
will prove the theorem since one of the players is always

guaranteed to be able to run the protocol to completion and
in particular to receive |Π|/2 = N symbols.

We now provide the details. Fix any integer t ∈
{1, 2, . . . , T} such that at least one of the players receives
δ|Π|/2 or more symbols over the course of transmissions
1, 2, . . . , t. This is equivalent to saying that max{|G′ ∪
I ′|[1,t], |G′′ ∪ I ′′|[1,t]} > δN. Lemma 24 implies that

|||[1, t]||| > 2δN − 1. (110)

Now

max{corr[1, t− 1], corr[1, t]} 6 |D|
|||[1, t− 1]|||

6

(
1
4 − ε

)
δ · 2N

2δN − 3

6
1

4
− α, (111)

where the second step uses the bound |D| 6 (1
4−ε)δ·2N in the

hypothesis of the theorem, and the third step uses (108)–(110).
Moreover, (109) and (110) ensure that

|||[1, t]||| > |||[1, t− 1]||| > cn

α
log
|Σ|
α
. (112)

Now, consider the last time that Alice and Bob update their
copies of out over the course of transmissions 1, 2, . . . , t. The
complete sequence of symbols that Alice has received at the
time of her update is 6 ∗(R′[1, t− 1]) or 6 ∗(R′[1, t]). Likewise,
the complete sequence of symbols that Bob has received at the
time of his update is 6 ∗(R′′[1, t− 1]) or 6 ∗(R′′[1, t]). By (111),
(112), and Theorem 42, both players set out to the leaf vertex
in the unique root-to-leaf path in X ∪ Y.

In the terminology of our paper, Braverman et al. [5] studied
interactive coding schemes with (1 − 2η)-early output that
tolerate corruption rate η. As their main result, they proved
the existence of such a scheme with alphabet size O(1) and
communication cost O(|π| log |Σ|) for any constant η < 1/18.
They also showed that no such scheme exists in general for
η > 1/6. Our paper closes the gap between the 1/18 and 1/6,
establishing the existence of an interactive coding scheme for
any π and any constant η < 1/6. This can be seen by taking
δ = 1− 2η and ε = 1

4 −
η

1−2η in Theorem 44.

I. Optimality

We now establish the optimality of Theorem 32, showing
that it tolerates the highest possible corruption rate and nor-
malized corruption rates. We do so by studying the pointer
jumping protocol PJPn, defined for n > 1 as the protocol
with input space {0, 1}n × {0, 1}n in which Alice and Bob
exchange their strings one bit at a time, taking turns after every
bit. Thus, the sequence of symbols exchanged on input (x, y)
is x1y1 . . . xnyn. We show that no interactive coding scheme
with alphabet size 2o(n) for PJPn can tolerate a corruption rate,
or normalized corruption rates, higher than those tolerated by
Theorem 32 with a constant-size alphabet. Our proof uses the
“cut and paste” technique of previous impossibility results [6],
[5]. We will first establish a detailed technical theorem and
then deduce our impossibility results as corollaries.

28

Theorem 45: Let εsubs, εoos > 0 be given. Suppose that Π is
an interactive coding scheme with alphabet Σ for PJPn that
tolerates normalized corruption rate (εsubs, εoos). Then

εsubs +
3

4
εoos <

1

4
+

log |Σ|
n

. (113)

Proof: Let N = |Π|/2 be the number of communication
rounds in Π. Since Π simulates PJPn, the former produces at
least as many distinct transcripts as the latter. This leads to
|Σ|2N > 4n and

N >
n

log |Σ|
. (114)

The centerpiece of the proof is the following claim.
Claim 46: Assume the hypothesis of Theorem 45, so that

Π is an interactive coding scheme with alphabet Σ for PJPn
that tolerates normalized corruption rate (εsubs, εoos). Then the
system

k 6 εoos(2N − k), (115)⌈
N

2

⌉
− k 6 εsubs(2N − k) (116)

has no integral solution 0 6 k 6 dN/2e.
Proof: For the sake of contradiction, suppose that the

system has a solution k ∈ {0, 1, 2, . . . , dN/2e}. Fix arbitrary
x, y, y′ ∈ {0, 1}n with y 6= y′, and consider the following two
executions of Π.

1) Alice and Bob receive inputs x and y, respectively. The
adversary uses substitution attacks to replace Bob’s first
dN/2e − k responses to Alice with the corresponding
responses that he would send if his input were y′.
Then the adversary carries out k consecutive out-of-sync
attacks, intercepting Alice’s transmissions to Bob and
sending back to Alice the responses that Bob would send
at that point if his input were y′. From then on, the
adversary does not interfere with the communication. We
let σ1, σ2, . . . , σN ∈ Σ denote the complete sequence of
symbols that Alice receives in this execution.

2) Alice and Bob receive inputs x and y′, respectively. The
adversary does not interfere with the first bN/2c rounds
of communication. As a result, the sequence of symbols
that Alice receives in those rounds is σ1, σ2, . . . , σbN/2c.
The adversary tampers with every symbol delivered to
Alice from then on, making sure that she receives the
sequence σbN/2c+1, . . . , σN−1, σN . The adversary does
so using dN/2e − k consecutive substitution attacks fol-
lowed by k consecutive out-of-sync attacks. At that point,
the communication stops because Alice has received N
symbols.

Both executions feature 2N − k transmissions, dN/2e − k
substitution attacks, and k out-of-sync attacks. By (115)
and (116), these numbers of substitution and out-of-sync
attacks are legitimate under normalized corruption rate
(εsubs, εoos). As a result, Alice and Bob’s simulation of PJPn
is correct in both executions. Since PJPn produces different
transcripts on (x, y) and (x, y′), we conclude that both Alice
and Bob are able to distinguish between the two executions.

We have reached the promised contradiction because the two
executions look identical to Alice.

We now return to the proof of the theorem. The values k ∈
[0, dN/2e] that satisfy (115) form a subinterval of [0, dN/2e]
that contains 0. Analogously, the values k ∈ [0, dN/2e] that
satisfy (116) form a subinterval of [0, dN/2e] that contains
dN/2e. Since the system of these two inequalities has no
integral solution in [0, dN/2e], there exists k∗ ∈ [0, dN/2e−1]
such that k = k∗ + 1 and k = k∗ violate (115) and (116),
respectively:

εoos <
k∗ + 1

2N − k∗ − 1
,

εsubs <
dN/2e − k∗

2N − k∗
.

Taking a weighted sum of these inequalities with weights 3/4
and 1,

3

4
εoos + εsubs <

3

4
· k∗ + 1

2N − k∗ − 1
+

1
2 (N + 1)− k∗

2N − k∗

=
1

4
+

5N − k∗ − 1

2(2N − k∗ − 1)(2N − k∗)

6
1

4
+

1

N
,

where the last step uses k∗ 6 (N − 1)/2. By (114), the proof
is complete.
We now derive our claimed impossibility results as corollaries
of Theorem 45.

Corollary 47: Suppose that for every n > 1, there is an in-
teractive coding scheme for the pointer jumping protocol PJPn
with alphabet size 2o(n) that tolerates normalized corruption
rate (εsubs, εoos). Then

εsubs +
3

4
εoos 6

1

4
.

Proof: Substitute |Σ| = 2o(n) in Theorem 45 and pass to
the limit as n→∞.

Corollary 48: Suppose that for every n > 1, there is an
interactive coding scheme for the pointer jumping protocol
PJPn with alphabet size 2o(n) that tolerates corruption rate ε.
Then

ε 6
1

4
.

Proof: Any scheme that tolerates corruption rate ε must
also tolerate normalized corruption rate (ε, 0). Therefore, the
claim follows by taking εsubs = ε and εoos = 0 in Corollary 47.

ACKNOWLEDGMENT

The authors are thankful to Mark Braverman, Rafail Ostro-
vsky, and anonymous reviewers for their valuable feedback on
an earlier version of this manuscript.

APPENDIX

The purpose of this appendix is to prove Theorem 9 on
the existence of α-good codes, which we now restate for the
reader’s convenience.

29

Theorem 49 (restatement of Theorem 9): For any alphabet
Σin, any 0 < α < 1, and any integer n > 0, there is an
α-good code C : Σ6n

in → Σ6n
out of depth n with

|Σout| =
⌈

(10|Σin|)1/α e

α

⌉2

. (117)

Our treatment is a reworked and simplified version of an
argument of Braverman et al. [5], who proved the existence
of a closely related family of tree codes.

We fix α for the rest of the proof and define Σout to be
the alphabet of consecutive natural numbers, with cardinality
given by (117). For strings u and v, we write u � v to mean
that ED(u, v) < (1−α)(|u|+ |v|). For a tree code C : Σ6n

in →
Σ6n

out of depth n and a string u ∈ Σ6n
in , we let Cu denote the

tree code Cu : Σ
6n−|u|
in → Σ

6n−|u|
out of depth n− |u| given by

Cu(v) = (C(uv))>|u|.

Our proof centers around two inductively defined families
C0,C1,C2, . . . ,Cn, . . . and C ∗0 ,C

∗
1 ,C

∗
2 , . . . ,C

∗
n , . . . , where

Cn and C ∗n are sets of tree codes of depth n. As a base
case, we let C0 = C ∗0 be the family whose only member
is the tree code ε 7→ ε, which is by definition the only
tree code of depth 0. Assuming that C0,C1,C2, . . . ,Cn−1 and
C ∗0 ,C

∗
1 ,C

∗
2 , . . . ,C

∗
n−1 have been constructed, we define Cn

to be the family of all tree codes C : Σ6n
in → Σ6n

out of depth
n such that Cσ ∈ C ∗n−1 for all σ ∈ Σin, and define C ∗n to be
the family of all α-good codes in Cn. To settle Theorem 9, it
remains to prove that each C ∗n is nonempty. We will in fact
prove the following stronger claim:

|C ∗n |
|Cn|

>
1

2
, n = 0, 1, 2, 3, (118)

We will argue by induction on n. The base case n = 0 is
trivial. For the inductive step, fix n > 1 arbitrarily and assume
that |C ∗i |/|Ci| > 1/2 for i = 0, 1, 2, . . . , n−1. A key technical
element of our analysis is the following observation.

Claim 50: Let u, v, w ∈ Σ∗in be given, where

v61 6= w61,

|uv| 6 n,

|uw| 6 n.

Then

P
C∈Cn

[C(uv) � Cu(w)] 6

(
1

5|Σin|

)|u|+|v|+|w|
.

The hypothesis v61 6= w61 above amounts to saying that the
longest common prefix of v and w is the empty string.

Proof of Claim 50: The claim follows from the following
derivation, whose steps we will justify shortly:

P
C∈Cn

[C(uv) � Cu(w)]

6 2|u| P
z∈Σ

|u|
out

C∈Cn−|u|

[zC(v) � C(w)] (119)

= 2|u| P
z∈Σ

|u|
out

C′,C′′∈Cn−|u|

[zC ′(v) � C ′′(w)] (120)

6 2|u|+|v| P
z∈Σ

|u|
out

z′∈Σ
|v|
out

C′′∈Cn−|u|

[zz′ � C ′′(w)] (121)

6 2|u|+|v|+|w| P
z∈Σ

|u|
out

z′∈Σ
|v|
out

z′′∈Σ
|w|
out

[zz′ � z′′] (122)

6 2|u|+|v|+|w|

(
e

α
√
|Σout|

)α(|u|+|v|+|w|)

(123)

6
1

(5|Σin|)|u|+|v|+|w|
. (124)

Inequality (119) is trivially true for u = ε. To verify validity
for |u| > 1, observe that

P
C∈Cn

[C(uv) � Cu(w)]

= P
z1∈Σout
C∈C∗n−1

[z1C(u>2v) � Cu>2
(w)]

6 P
z1∈Σout
C∈Cn−1

[z1C(u>2v) � Cu>2
(w)] · |Cn−1|

|C ∗n−1|

6 P
z1∈Σout
C∈Cn−1

[z1C(u>2v) � Cu>2
(w)] · 2,

where the first step uses the definition of Cn, and the last two
steps use C ∗n−1 ⊆ Cn−1 and |C ∗n−1| > |Cn−1|/2. Applying
this maneuver an additional |u| − 1 times settles (119). The
next step, (120), is valid because the longest common prefix of
v and w is the empty string and therefore C(v) and C(w) are
independent. Steps (121) and (122) can be verified in a manner
identical to (119). The final steps (123) and (124) follow from
Proposition 4 and (117), respectively.

Armed with Claim 50, we are now in a position to complete
the inductive step. Our objective is to show that |C ∗n |/|Cn| >
1/2, or equivalently that a uniformly random code C ∈ Cn
has an α-violation with probability at most 1/2. Recall that
an α-violation in C is a quadruple of vertices (A,B,D,E) in
the tree representation of C with the following properties:

1) B is the deepest common predecessor of D and E;
2) A is a predecessor of B;
3) AD � BE, where AD ∈ Σ∗out and BE ∈ Σ∗out denote the

concatenation of the code symbols along the path from
A to D and the path from B to E, respectively.

We further deduce that
4) A is the root;

30

5) B 6= E.

The former holds because the codes in C ∗n−1 have no α-
violations, and the latter follows from Remark 7. These
structural constraints allow us to identify an α-violation
(A,B,D,E) in C in a one-to-one manner with a triple of
strings u, v, w ∈ Σ∗in such that v61 6= w61, w 6= ε, and
C(uv) � Cu(w). Applying the union bound over all such
triples u, v, w,

P
C∈Cn

[C has an α-violation]

6
∑
u∈Σ∗in:
|u|<n

∑
v∈Σ∗in:
|v|6n−|u|

∑
w∈Σ+

in :
|w|6n−|u|,
w61 6=v61

P
C∈Cn

[C(uv) � Cu(w)].

Appealing to Claim 50 and simplifying,

P
C∈Cn

[C has an α-violation]

6
∑
u∈Σ∗in:
|u|<n

∑
v∈Σ∗in:
|v|6n−|u|

∑
w∈Σ+

in :
|w|6n−|u|,
w61 6=v61

(
1

5|Σin|

)|u|+|v|+|w|

6
∑
u∈Σ∗in

∑
v∈Σ∗in

∑
w∈Σ+

in

(
1

5|Σin|

)|u|+|v|+|w|

=

∞∑
i=0

∞∑
j=0

∞∑
k=1

1

5i+j+k

=
1

5
· 1(

1− 1
5

)3
<

1

2
.

The final inequality is equivalent to |C ∗n |/|Cn| > 1/2, com-
pleting the inductive step. We have settled (118) and thereby
proved Theorem 9.

REFERENCES

[1] S. Agrawal, R. Gelles, and A. Sahai, “Adaptive protocols for interactive
communication,” in IEEE International Symposium on Information
Theory, ISIT 2016, Barcelona, Spain, July 10-15, 2016, 2016, pp. 595–
599.

[2] Z. Brakerski, Y. T. Kalai, and M. Naor, “Fast interactive coding against
adversarial noise,” J. ACM, vol. 61, no. 6, pp. 35:1–35:30, 2014.

[3] G. Brassard, A. Nayak, A. Tapp, D. Touchette, and F. Unger, “Noisy
interactive quantum communication,” in Proceedings of the Fifty-Fifth
Annual IEEE Symposium on Foundations of Computer Science (FOCS),
2014, pp. 296–305.

[4] M. Braverman and K. Efremenko, “List and unique coding for interactive
communication in the presence of adversarial noise,” in Proceedings of
the Fifty-Fifth Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 2014, pp. 236–245.

[5] M. Braverman, R. Gelles, J. Mao, and R. Ostrovsky, “Coding for
interactive communication correcting insertions and deletions,” IEEE
Trans. Information Theory, vol. 63, no. 10, pp. 6256–6270, 2017.

[6] M. Braverman and A. Rao, “Toward coding for maximum errors in
interactive communication,” IEEE Trans. Information Theory, vol. 60,
no. 11, pp. 7248–7255, 2014.

[7] K. Efremenko, R. Gelles, and B. Haeupler, “Maximal noise in interactive
communication over erasure channels and channels with feedback,”
IEEE Trans. Information Theory, vol. 62, no. 8, pp. 4575–4588, 2016.

[8] M. K. Franklin, R. Gelles, R. Ostrovsky, and L. J. Schulman, “Optimal
coding for streaming authentication and interactive communication,”
IEEE Trans. Information Theory, vol. 61, no. 1, pp. 133–145, 2015.

[9] R. Gelles, “Coding for interactive communication: A survey,” Founda-
tions and Trends in Theoretical Computer Science, vol. 13, no. 1-2, pp.
1–157, 2017.

[10] R. Gelles and B. Haeupler, “Capacity of interactive communication over
erasure channels and channels with feedback,” in Proceedings of the
Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2015, San Diego, CA, USA, January 4-6, 2015, 2015, pp. 1296–
1311.

[11] R. Gelles, A. Moitra, and A. Sahai, “Efficient coding for interactive
communication,” IEEE Trans. Information Theory, vol. 60, no. 3, pp.
1899–1913, 2014.

[12] M. Ghaffari and B. Haeupler, “Optimal error rates for interactive coding
II: efficiency and list decoding,” in Proceedings of the Fifty-Fifth Annual
IEEE Symposium on Foundations of Computer Science (FOCS), 2014,
pp. 394–403.

[13] M. Ghaffari, B. Haeupler, and M. Sudan, “Optimal error rates for
interactive coding I: adaptivity and other settings,” in Proceedings of the
Forty-Sixth Annual ACM Symposium on Theory of Computing (STOC),
2014, pp. 794–803.

[14] B. Haeupler, “Interactive channel capacity revisited,” in Proceedings of
the Fifty-Fifth Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 2014, pp. 226–235.

[15] S. Jukna, Extremal Combinatorics with Applications in Computer Sci-
ence, 2nd ed. Springer-Verlag Berlin Heidelberg, 2011.

[16] J. Justesen, “Class of constructive asymptotically good algebraic codes,”
IEEE Trans. Information Theory, vol. 18, no. 5, pp. 652–656, 1972.

[17] G. Kol and R. Raz, “Interactive channel capacity,” in Proceedings of the
Forty-Fifth Annual ACM Symposium on Theory of Computing (STOC),
2013, pp. 715–724.

[18] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp. 707–710,
1966.

[19] R. Ostrovsky, Y. Rabani, and L. J. Schulman, “Error-correcting codes
for automatic control,” IEEE Trans. Information Theory, vol. 55, no. 7,
pp. 2931–2941, 2009.

[20] L. J. Schulman, “Communication on noisy channels: A coding theorem
for computation,” in Proceedings of the Thirty-Third Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 1992, pp.
724–733.

[21] ——, “Deterministic coding for interactive communication,” in Pro-
ceedings of the Twenty-Fifth Annual ACM Symposium on Theory of
Computing (STOC), 1993, pp. 747–756.

[22] ——, “Coding for interactive communication,” IEEE Trans. Information
Theory, vol. 42, no. 6, pp. 1745–1756, 1996.

[23] L. J. Schulman and D. Zuckerman, “Asymptotically good codes correct-
ing insertions, deletions, and transpositions,” IEEE Trans. Information
Theory, vol. 45, no. 7, pp. 2552–2557, 1999.

[24] A. C.-C. Yao, “Some complexity questions related to distributive com-
puting,” in Proceedings of the Eleventh Annual ACM Symposium on
Theory of Computing (STOC), 1979, pp. 209–213.

