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Communication is a universal process by which two or more individuals exchange

information. A communication task that we study involves two (or more) parties,

each given their own private input, trying to solve a function f or other computa-

tional task on their inputs together. For example, distributed data centers routinely

check consistency with each other. An important feature of common communication

phenomena is that it is interactive. The parties communicate alternatively and adap-

tively. This feature is absent in the classical information theory which focuses on

one-way transmissions. However, the questions studied in the classical information

theory remain valid and vital. For example, how do we minimize the communication

cost for a certain communication task and how do we handle noise when it is present.

From a historical point of view, theoretical computer scientists initiated the study of

communication inspired mostly by complexity theory instead of information theory.
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The latter source of inspiration motivates many other important questions. For ex-

ample, how much more power a communication protocol gains given resources like

randomness, nondeterminism, or quantum entanglement, etc.

In this dissertation, we discuss three concrete problems regarding the above questions.

In particular, we study the following three problems.

(i) What is the maximum noise rate that can be tolerated in interactive commu-

nication? Specifically, we study the general noise model of arbitrary substi-

tutions, deletions, and insertions. We settle this problem by giving a coding

scheme that tolerates the maximum noise rate. A combinatorial ingredient

of our scheme is that of tree code. We prove the existence of a tree code with

strong distance properties.

(ii) What is the maximum communication complexity of constant-depth and

polynomial-size circuits? We obtain strong communication lower bounds,

ruling out the possibility of designing efficient generic communication pro-

tocols to solve this important class of problems. Our proof centers around

the analytical measures threshold degree and sign-rank. The technique we

use settles a 50-year-old problem in threshold degree that has applications

to other areas of theoretical computer science including circuits complexity

and learning theory.

(iii) How much power does a communication protocol gain taking advantage of

quantum mechanics? We give a near-optimal separation between quantum

and classical communication complexity, exhibiting functions that require

only O(log n) bits of communication for quantum protocols but any classical

protocol needs to essentially exchange the entire input. Our approach first

studies the analogous problem in the query model, for which we are able to
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exhibit an optimal separation. These questions are broadly recognized as

being central to understanding the phenomenon of quantum speedups.
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CHAPTER 1

Introduction

Communication is a universal process by which two or more individuals exchange

information. The rapid evolution in modern communication technology from mobile

devices to the Internet has dramatically changed the world. It will continuously

bring social values. No need to be loquacious, communication is important on its

own. For a computer scientist, communication is also interesting as it is closely

related to computation. In any computational device, there are components in the

device that communicate in disguise with each other during all sorts of computation.

Communication is not simply a product of specific algorithms but is inherent in

many situations. Due to this reason, the study of communication provides a way

to understand computation. Driven by its practical and theoretical importance, the

study of communication has evolved into a large body of research.

In this dissertation, we study the communication phenomenon from the theoretical

side. We focus on the abstract communication model. The basic two-party model,

proposed by Yao [139], features two geographically separated parties, Alice and Bob.

Alice and Bob have private inputs x and y, respectively, and need to communicate

back and forth to accomplish some communication task, say to compute a given

function f(x, y). We study the communication between Alice and Bob and ignore

any computation taken by each individual. The communication channel between

Alice and Bob may be classical, may be quantum, and may suffer from adversarial

noise. The protocol may need to output a correct answer all the time, may need to
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output a correct answer with bounded error, or with unbounded error. We will discuss

all these aspects in detail in later chapters.

There are two perspectives we take on the study of communication. The first one

is information theoretical. Classical information theory studies one-way transmission

of information as opposed to interactive communication. Two of the fundamental

problems studied by classical information theory are: what is the minimum commu-

nication cost to transmit a message? how does one handle noise if it is present? It is

natural to generalize the theory to an interactive setting. Under this point of view,

there are two analogous questions that we can ask:

Q1. For a given function f : {0, 1}n × {0, 1}n → {0, 1}, what is the minimum

communication cost for Alice and Bob to solve f?

Q2. Suppose we already have a protocol π designed for the noiseless channel, how

to encode π such that the encoded protocol can tolerate noise?

There are other fundamental questions, for example, how do we define the information

content of a protocol, and do we have a general compression theorem that compresses

a protocol to its information content. These questions are out of the scope of this

dissertation.

The second perspective is complexity theoretical. A goal of computational complexity

theory is to understand the limitations of all sorts of computing devices with provided

resources. Communication is a resource. The study of communication complexity is

to prove lower bounds of communication cost for certain communication problems.

Therefore, communication complexity answers the first question in the previous para-

graph from the lower bound side. This new perspective also has a far-reaching in-

fluence on computer science. The reason is already mentioned—computation and
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communication are intertwined. Major breakthroughs in various sub-areas in com-

puter science are made possible via the lens of communication complexity. In fact,

communication complexity has applications in almost all areas of theoretical com-

puter science, including circuit complexity, streaming algorithms, learning theory,

etc. Another goal of complexity theory is to understand the relative power of differ-

ent complexity classes. An example is the well-known P v.s. NP problem. Inspired by

this goal from complexity theory, we can ask similar questions in the communication

context, like

Q3. How much more do power communication protocols gain given nondetermin-

ism, randomness, or quantum entanglement?

An intriguing aspect is that many questions can be answered in the communication

model but the analogous questions are beyond reach in any near future for Turing

machines.

1.1. Our contributions

In this section, we put the three questions mentioned above in concrete settings. We

will briefly discuss our discoveries regarding these questions.

(i) What is the maximum noise rate that can be tolerated in interactive commu-

nication? Specifically, we study the general noise model of arbitrary substi-

tutions, deletions, and insertions. We settle this problem by giving a coding

scheme that tolerates the maximum noise rate. A key combinatorial ingredi-

ent of our scheme is that of tree code. We prove the existence of a tree code

with strong distance properties.

(ii) What is the maximum communication complexity of constant-depth and

polynomial-size circuits? Our focus is the unbounded-error regime. We
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obtain an essentially optimal lower bound. Our proof centers around the

analytical measures threshold degree and sign-rank. The technique we use

settles a 50-year-old problem in threshold degree that has applications to

other areas of theoretical computer science including circuit complexity and

learning theory.

(iii) How much power does a communication protocol gain taking advantage of

quantum mechanics? We give a near-optimal separation between quantum

and classical communication complexity, exhibiting functions that require

only O(log n) bits of communication for quantum protocols but any classical

communication protocol needs to essentially exchange the entire input. Our

approach first studies the analogous problem in the query model, for which

we are able to exhibit and optimal separation. These questions are broadly

recognized as being central to understanding the phenomenon of quantum

speedups.

1.1.1. Interactive coding. Noise is omnipresent in communication. In the clas-

sical setting of one-way communication, the study of information transmission under

noise forms a large part of classical information theory. In pioneering work, Schul-

man [111] considered noise in the setting of interactive communication. This area of

research, called interactive coding, is a fascinating and highly active discipline at the

crossroads of information theory and communication complexity. More concretely,

consider the following scenario. Alice and Bob would like to execute a communi-

cation protocol π defined for a noiseless environment. However, the communication

channel is controlled by an adversary who can substitute any fraction ρ of symbols

transmitted through the channel. The question is, can Alice and Bob use some inter-

active analogue of error-correcting codes to ensure that they are both able to recover,

from their noisy communication, the transcript that π would have been produced
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without noise? Braverman and Rao [26] gave an affirmative answer for any constant

ρ ∈ [0, 1/4).

A far-reaching generalization of this model, proposed by Braverman et al. [25], al-

lows arbitrary corruptions: insertions, deletions, and substitutions. Besides being a

natural and interesting generalization that has been studied extensively in coding the-

ory [87, 112, 70], this corruption model has also found application in the standard

corruption model (substitution errors only) [21]. For any constant ε > 0, the authors

of [25] showed how to faithfully simulate any protocol in this generalized model with

corruption rate up to 1
18
− ε, using a constant-size alphabet and a constant-factor

overhead in communication.

Braverman et al. [25]’s work left open the following natural and fundamental ques-

tion: what is the maximum corruption rate that can be tolerated in this generalized

model of substitutions, insertions, and deletions? We gave a complete and somewhat

surprising answer to this question in [128]. We showed that for any ε > 0, there is an

interactive coding scheme that uses a constant-size alphabet and achieves the noise

tolerance rate of 1
4
−ε, at the expense of a constant-factor overhead in communication

complexity compared to π. This rate is easily seen to be optimal, even in the presence

of substitution errors alone.

1.1.2. Unbounded-error communication. Like many other computational

models, a protocol is allowed to err when taking advantage of randomness. For the

protocol to be meaningful computing a Boolean function, however, its error probabil-

ity should be strictly smaller than 1/2. If we only enforce such a criterion of success

on the communication protocol, then its minimum communication cost is called the

communication complexity with unbounded error, unbounded in the sense that the er-

ror probability can be arbitrarily close but not equal to 1/2. This model is first defined
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and studied by Paturi and Simon [101]. As one would expect, the relaxed success

criterion grants the protocol more power, and therefore it is harder to prove strong

lower bounds in this model. In fact, the communication complexity with unbounded

error is one of the strongest communication models (e.g., stronger than randomized

and quantum communication model) for which we have tools to prove explicit lower

bounds. For this reason, the study of communication protocols with unbounded error

stands at the frontier of current research. Constant depth circuits (AC0) is a central

complexity class in theoretical computer science. Many of the greatest achievements

in theoretical computer science address questions regarding AC0. In the pioneering

work of Babai et al. [11], the authors asked the question: are there functions in AC0

that do not admit any efficient communication protocols with unbounded error.

We prove that there are functions computable by constant depth circuits such that

Alice (or Bob) has to essentially send her entire input for them to achieve a success

probability barely larger than 1/2. This is the strongest communication lower bounds

for AC0. In the complexity theoretical language, our result optimally separates the

polynomial hierarchy PH and communication complexity class with unbounded error

UPP. The precise definitions of these complexity classes can be found in [11], and

are analogues of the corresponding complexity classes for Turing machines.

Our approach centers around the analysis of the sign-representation of Boolean func-

tions. Representations of Boolean functions by real polynomials are of great impor-

tance in many different contexts, from communication complexity and quantum com-

puting to machine learning theory. For example, the notion of approximate degree has

played an essential role in quantum query complexity for decades. Threshold degree

has an even broader range of applications, including various models of computational

learning. The notion of threshold degree originates in the pioneering work of Minsky

and Papert [90] and is defined, for a Boolean function f : {0, 1}n → {−1, 1}, as the
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minimum degree of a real polynomial p that represents f in sign: (−1)f(x) = sgn p(x)

for all x. In particular, the threshold degree of polynomial-size constant-depth circuits

has been the focus of 50 years of work. We were able to essentially settle this long-

standing problem in [129]. More specifically, we proved that for any ε > 0, there is

an AC0 circuit with threshold degree Ω(n1−ε). This lower bound essentially matches

the trivial upper bound of O(n) and is a polynomial improvement on the best pre-

vious lower bound, Ω(
√
n). We also proved a much stronger result that applies not

only to threshold degree but also to sign-rank—a vastly more general notion than

threshold degree. A remarkable fact due to Paturi and Simon is that the sign-rank

and the communication complexity with unbounded error are essentially the same

mathematical notion [101].

Among many other things, our results have important applications in learning theory.

In particular, our results rule out the possibility of the distribution-free PAC learning

of AC0 based on the powerful dimension complexity paradigm. This framework

captures nearly all known algorithmic results for distribution-free PAC learning.

1.1.3. Quantum versus classical communication. One central task in quan-

tum computing is to answer how much more powerful quantum computers can be

than classical computers. Of particular prominence in this line of research are results

demonstrating the superiority of quantum algorithms over their classical counterparts.

For example, the celebrated Shor’s factoring algorithm shows how to factor a number

in polynomial time by quantum computers, for which no classical polynomial-time

algorithm is known despite decades of research. In the context of communication, it

is trivial that there is a function whose deterministic communication complexity is

linear but quantum communication complexity is constant, e.g., the equality prob-

lem. So the more interesting question is: what is the largest separation between the

randomized and quantum communication complexity. We are particularly interested
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in the bounded-error regime, where the protocol is allowed to err with a small con-

stant probability. The first exponential separation was due to Raz [103], followed by

a sequence of improvement [107, 57, 135].

We prove in our work that for any constant ε > 0, there is a partial function f , such

that the quantum communication complexity of f is O(log n) but its randomized

communication complexity is Ω(n1−ε) [127]. This separation is essentially optimal

and a polynomial improvement on previous work. On the other hand, if we are only

interested in total functions, we prove a cubic separation, again improving prior works

by a polynomial factor. Notice how small this gap is compared to the case of partial

functions. It is a major open problem to determine if for total functions quantum

and randomized communication complexity are in fact polynomially related.

We obtain the above separation results by first proving an analogous result in the

query model, and then apply a very general framework that lifts our hardness results

in the query model to the communication model. Quantum query complexity has been

studied even more extensively and can be justly considered to be among the biggest

achievements of quantum computing to date. In groundbreaking work, Simon [131]

exhibited a partial Boolean function whose bounded-error quantum query complexity

is exponentially smaller than its randomized (i.e., classical) query complexity. This

raises the question: what is the largest possible separation between quantum and

randomized query complexity? This question was first explicitly stated in 2002 by

Buhrman et al. [30], and has since been popularized by Aaronson and Ambainis [2].

We settled this 18-year-old problem completely in [127]. Specifically, we proved that

for any constant k, there is a partial function f with quantum query complexity

at most k and randomized query complexity Ω̃(n1−1/2k). This gives an O(1) versus

Ω(n1−ε) separation for any ε > 0, which is a polynomial improvement on the best
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previous separation of O(1) versus Ω(n2/3−ε) due to Tal [135]. Moreover, our separa-

tion is optimal due to Aaronson and Ambainis’ result [2] that any k-query quantum

algorithm can be simulated by O(n1−1/2k) randomized classical queries, for an arbi-

trary constant k. By the well-known framework of “cheatsheets” due to Aaronson et

al. [3], our result also implies a cubic separation between quantum and randomized

query complexity for total functions. This separation is the largest known and has

been conjectured to be tight by other researchers [4].

As a technical centerpiece of our work [127], we prove a tight bound on the `1 norm

of any given level of the Fourier spectrum of decision trees. This bound on Fourier

weight settles a conjecture of Tal [135] and is of substantial interest in its own right,

considering the central role of the Fourier spectrum in many recent breakthroughs in

the area [45, 46, 104].

1.2. Organization

In Chapter 2, we set our notations and provide a basic mathematical background

for the remaining chapters. In Chapter 3, we define various communication mod-

els in detail. From deterministic communication, randomized communication with

bounded error or unbounded error, to the more advanced quantum communication

and multiparty communication. We also discuss a few general techniques that we will

use to show strong communication lower bounds for various models. In Chapter 4,

we discuss our contribution to communication against the adversarial noise of inser-

tions, deletion, and substitutions based on the paper [128]. This is a joint work with

Sherstov. In Chapter 5, we present our work on the unbounded-error communication

of AC0. This part is based on the paper [129], another joint work with Sherstov.

In Chapter 6, we discuss our near-optimal result on the separation of quantum and

classical communications, exhibiting the superiority of quantum computation in the

9



context of interactive communication as well as of the query model. This is based on

the paper [127], a joint work with Sherstov and Storozhenko. In the final chapter,

we conclude our dissertation and point out some problems for future research.
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CHAPTER 2

Notations and preliminaries

In this chapter, we set the notations, and provide a minimum background on the

technical tools we will use in this dissertation. Most of the notations are standard,

but some can be unfamiliar.

2.1. Numbers, sets and functions

We adopt the standard notation N = {0, 1, 2, 3, . . .}, Z+ = {1, 2, 3, . . .}, R, R+ and C

for the sets of natural numbers, positive integers, real numbers, positive real numbers

and complex numbers, respectively. We adopt the extended real number system

R ∪ {−∞,∞} in all calculations. In particular, we have a/0 = ∞ for any positive

number a ∈ R. To simplify our notation, we further adopt the convention that

0

0
= 0.

For any a, b ∈ R, we adopt the standard notation of open/closed intervals, i.e.,

(a, b) = {x ∈ R : a < x < b},

[a, b] = {x ∈ R : a ≤ x ≤ b},

[a, b) = {x ∈ R : a ≤ x < b},

(a, b] = {x ∈ R : a < x ≤ b}.

Occasionally, we will also encounter finite fields, e.g., F2 = {0, 1}. Number 0 and 1 are

commonly used to represent the “true” or “false” value of a Boolean variable. Another
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common representation is {−1, 1}, where −1 encodes “true” and 1 encodes “false.”

Each representation can be convenient in different scenarios. The default representa-

tion in this dissertation is {0, 1}, but we will also use the {−1, 1} representation. We

use the standard definition of the sign function:

sgnx =


−1 if x < 0,

0 if x = 0,

1 if x > 0.

As usual, the cardinality of a set A, denoted |A|, is the number of elements in A.

The complement of a set A is denoted A. For arbitrary sets A and B, we define the

cardinality of A relative to B by |A|B = |A ∩ B|. For a set A and a sequence s of

elements, we let A ∪ s denote the set of elements that occur in either A or s. We

define A∩ s analogously. For nonempty sets A,B ⊆ R, we write A < B to mean that

a < b for all a ∈ A, b ∈ B. It is clear that this relation is a partial order on nonempty

subsets of R. The power set of a set S, denoted by P(S), is the set of all subsets of

S. For a set S and a nonnegative integer k, we let
(
S
k

)
denote the family of subsets

of S that have cardinality exactly k, and
(
S
<k

)
the family of subsets of S that have

cardinality less than k.
(
S
≤k

)
,
(
S
>k

)
,
(
S
≥k

)
are defined analogously We further define

Pn,k =

(
{1, 2, . . . , n}

k

)
= {S ⊆ {1, 2, . . . , n} : |S| = k}.

The following well-known bound [73, Proposition 1.4] is used in our proofs without

further mention:(n
k

)k
≤
(
n

k

)
≤
(en
k

)k
, k = 1, 2, . . . , n, (2.1.1)

where e = 2.7182 . . . denotes Euler’s number.
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For a logical condition C, we use the Iverson bracket:

I[C] =

1 if C holds,

0 otherwise.

For a finite set X, we let RX denote the family of real-valued functions on X. The

support of a function f ∈ RX is denoted supp f = {x ∈ X : f(x) 6= 0}. For real-valued

functions with finite support, we adopt the usual norms and inner product:

‖f‖∞ = max
x∈supp f

|f(x)|,

‖f‖1 =
∑

x∈supp f

|f(x)|,

‖f‖2 =

( ∑
x∈supp f

|f(x)|2
)1/2

,

〈f, g〉 =
∑

x∈supp f ∩ supp g

f(x)g(x).

We adopt the convention that ‖f‖ = ‖f‖2. This covers as a special case functions

on finite sets. For f, g ∈ RX , we let f · g ∈ RX denote the point-wise product of

f and g, with (f · g)(x) = f(x)g(x). For a real-valued function f : X → R, recall

that arg minx∈X f(x) denotes the set of points where f attains its minimum value.

Analogously, arg maxx∈X f(x) denotes the set of points where f attains its maximum

value.

The functions lnx and log x stand for the natural logarithm of x and the logarithm

of x to base 2, respectively. To avoid excessive use of parentheses, we follow the

notational convention that ln a1a2 . . . ak = ln(a1a2 . . . ak) for any factors a1, a2, . . . , ak.

The binary entropy function H : [0, 1]→ [0, 1] is given by

H(x) = x log
1

x
+ (1− x) log

1

1− x
.

13



Basic calculus reveals that

H(x) ≤ 1− 2

ln 2

(
x− 1

2

)2

. (2.1.2)

2.2. Strings

In this dissertation, an alphabet Σ is any nonempty finite set of symbols other than

the asterisk ∗, which we treat as a reserved symbol. Recall that Σ∗ stands for the set

of all strings over Σ. We denote the empty string as usual by ε. For an alphabet Σ

and a natural number n, we let Σn denote the set of all string over Σ of length n, and

Σ≤n denote the set of strings of length up to n, so that Σ≤n = {ε}∪Σ∪Σ2∪· · ·∪Σn.

For any alphabet Σ, we let ≺ denote the standard partial order on Σ∗ whereby u ≺ v

if and only if uw = v for a nonempty string w. The derived relations �,�,� are

defined as usual by

u � v ⇔ v ≺ u,

u � v ⇔ v ≺ u or v = u,

u � v ⇔ u ≺ v or v = u.

A prefix of v is any string u with u � v. A suffix of v is any string u such that v = wu

for some string w. A prefix or suffix of v is called proper if it is not equal to v. A

subsequence of v is v itself or any string that can be obtained from v by deleting one

or more symbols.

For a string v over a given alphabet, we let |v| denote the length of v. For a set S,

we let v|S denote the substring of v indexed by the elements of S. In other words,

v|S = vi1vi2 · · · vi|S| where i1 < i2 < · · · < i|S| are the elements of S. For a number

ι ∈ [0,∞] in the extended real number system, we let v<ι denote the substring of

v obtained by keeping the symbols at indices less than ι. As special cases, we have
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v<1 = ε and v<∞ = v. The substrings v≤ι, v>ι, and v≥ι are defined analogously. In

any of these four definitions, an index range that is empty produces the empty string

ε.

2.3. Vectors and matrices

The abstract vector space is a commutative group A over a field F satisfying laws of

distributivity. We will work only with the Euclidean vector space and its subspaces.

The n-dimensional Euclidean space is the vector space Rn equipped with inner prod-

uct 〈·, ·〉. Its standard basis is the set {e1, e2, . . . , en}, where ei is the vector whose

coordinates are all 0 except the ith coordinate which is 1. Analogous to functions,

we adopt the familiar norms for vectors x ∈ Rn in Euclidean space:

‖x‖∞ = max
i=1,...,n

|xi|,

‖x‖1 =
n∑
i=1

|xi|,

‖x‖2 =

(
n∑
i=1

|xi|2
)1/2

.

To avoid notational clutter we use |x| interchangeably with ‖x‖1
1. We refer to |x| =

‖x‖1 as the weight of x. We also often omit the subscript in the `2-norm, i.e., ‖x‖ =

‖x‖2. For vectors x ∈ Rn, y ∈ Rm, define partial orders <, i.e., x < y means xi < yi

on all coordinates i. Analogously, we define >,≤,≥. Finally x 
 y means x ≥ y

and x 6= y. The tensor product x ⊗ y denotes the vector (. . . , xiyj, . . .) ∈ Rnm. The

notation x⊗n is the abbreviation for

x⊗ x⊗ · · · ⊗ x︸ ︷︷ ︸
n

.

1For a function f , |f | is the function whose evaluation at x is |f(x)|.
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Analogously, for vector space A with basis {α1, α2, . . . , αn} and vector space B with

basis {β1, β2, . . . , βm}, the tensor product A⊗B is the vector space of dimension nm,

whose basis is the set

{(αi, βj) : i = 1, 2, . . . , n, j = 1, 2, . . . ,m}.

A⊗n is defined in an analogous way for vector space A.

For any vector space A over R and any subset S of A, spanS is the subspace spanned

by vectors in S. In particular,

spanS =

{
m∑
i=1

aixi : ai ∈ R, xi ∈ S,m ∈ N

}
.

In addition, we define the convex hull convS and conical hull coneS,

convS =

{
m∑
i=1

aixi : ai ∈ R+,
m∑
i=1

ai = 1, xi ∈ S,m ∈ N

}
,

coneS =

{
m∑
i=1

aixi : ai ∈ R+, xi ∈ S,m ∈ N

}
.

In the context of quantum computing, the bra-ket notation is adopted. The ket |φ〉

denotes a column vector, while the bra 〈ψ| denotes a row vector. This notation can be

memorized by inner product of two vectors 〈ψ|φ〉 which can be interpreted as the ma-

trix multiplication of a row vector and a column vector. For two vectors |φ〉, |ψ〉, there

are various notations used to denote their tensor product, e.g., |φ, ψ〉, |φψ〉, |φ〉|ψ〉.

The symbol Rn×m refers to the family of all n bym matrices with real entries. For any

finite sets X, Y, we also use RX×Y denote the family of real matrices whose rows and

columns are indexed by elements from X and Y, respectively. We specify matrices

by their generic entry, e.g., M = [f(x, y)]x∈X,y∈Y. We denote the rank of any matrix
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M ∈ Rn×m by rkM . Recall that the spectral norm of M is given by

‖M‖ = max
x∈Rm:‖x‖=1

‖Mx‖.

2.4. Boolean functions and circuits

We view Boolean functions as mappings X → {0, 1} for some finite set X. More

generally, we consider partial Boolean functions f : X → {0, 1, ∗}, with the output

value ∗ used for don’t-care inputs. The negation of a Boolean function f is denoted

as usual by ¬f = 1−f. The familiar functions ORn,ANDn,XORn,MAJn : {0, 1}n →

{0, 1} are given by

ORn(x) = 1 ⇔ ∃ i, xi = 1,

ANDn(x) = 1 ⇔ ∀ i, xi = 1,

XORn(x) = 1 ⇔
n∑
i=1

xi is odd,

MAJn(x) = 1 ⇔
n∑
i=1

xi > n/2.

We also refer to XOR as the parity function, as it computes the parity of input’s

weight. We abbreviate NORn = ¬ORn.

We adopt the standard notation for function composition, with f ◦ g defined by

(f ◦ g)(x) = f(g(x)). In addition, we use the ◦ operator to denote the component-

wise composition of Boolean functions. Formally, the component-wise composition

of f : {0, 1}n → {0, 1} and g : X → {0, 1} is the function f ◦ g : Xn → {0, 1} given

by (f ◦ g)(x1, x2, . . . , xn) = f(g(x1), g(x2), . . . , g(xn)). Component-wise composition

is consistent with standard composition, which in the context of Boolean functions is

only defined for n = 1. Thus, the meaning of f ◦g is determined by the range of g and
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is never in doubt. Component-wise composition generalizes in the natural manner to

partial Boolean functions f : {0, 1}n → {0, 1, ∗} and g : X → {0, 1, ∗}, as follows:

(f ◦ g)(x1, . . . , xn) =

f(g(x1), . . . , g(xn)) if x1, . . . , xn ∈ g−1(0 ∪ 1),

∗ otherwise.

Compositions f1 ◦ f2 ◦ · · · ◦ fk of three or more functions, where each instance of the

◦ operator can be standard or component-wise, are well-defined by associativity and

do not require parenthesization.

For Boolean strings x, y ∈ {0, 1}n, we let x ⊕ y denote their bitwise XOR. The

strings x ∧ y and x ∨ y are defined analogously, with the binary connective ap-

plied bitwise. A Boolean circuit C in variables x1, x2, . . . , xn is a circuit with inputs

x1,¬x1, x2,¬x2, . . . , xn,¬xn and gates ∧ and ∨. The circuit C is monotone if it does

not use any of the negated inputs ¬x1,¬x2, . . . ,¬xn. The fan-in of C is the maximum

in-degree of any ∧ or ∨ gate. Unless stated otherwise, we place no restrictions on

the gate fan-in. The size of C is the number of ∧ and ∨ gates. The depth of C

is the maximum number of ∧ and ∨ gates on any path from an input to the out-

put gate. With this convention, the circuit that computes (x1, x2, . . . , xn) 7→ x1 has

depth 0. The circuit class AC0 consists of function families {fn}∞n=1 such that each

fn : {0, 1}n → {0, 1} is computed a Boolean circuit of size at most cnc and depth at

most c, for some constant c ≥ 1 and all n. We specify small-depth layered circuits

by indicating the type of gate used in each layer. For example, an AND-OR-AND

circuit is a depth-3 circuit with the top and bottom layers composed of ∧ gates, and

middle layer composed of ∨ gates. A Boolean formula is a Boolean circuit in which

every gate has fan-out 1. Common examples of Boolean formulas are DNF and CNF

formulas.
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2.5. Fourier transform

In this section, we discuss Fourier transform of real-valued functions whose domain

is the finite Abelian group of the Boolean cubes, e.g., f : {0, 1}n → R. We use the

{0, 1}n representation at first for definitions. However, all the discussions apply to

the {−1, 1}n representation in a straightforward manner.

Consider the real vector space of functions {0, 1}n → R. For S ⊆ {1, 2, . . . , n}, define

χS : {0, 1}n → {−1, 1} by χS(x) = (−1)
∑
i∈S xi . Then

〈χS, χT 〉 =

2n if S = T,

0 otherwise.

Thus, {χS}S⊆{1,2,...,n} is an orthogonal basis for the vector space in question. In

particular, every function φ : {0, 1}n → R has a unique representation of the form

φ =
∑

S⊆{1,2,...,n}

φ̂(S)χS

for some reals φ̂(S), where by orthogonality φ̂(S) = 2−n〈φ, χS〉. The reals φ̂(S) are

called the Fourier coefficients of φ, and the mapping φ 7→ φ̂ is the Fourier transform

of φ. The order of a Fourier coefficient φ̂(S) is the cardinality |S|. The degree of

φ is the quantity max{|S| : φ̂(S) 6= 0}. From basic linear algebra, one can derive

Plancherel’s theorem

〈f, g〉 = 2n
∑

S⊆{1,2,...,n}

f̂(S)ĝ(S).

A simple and useful corollary (Parseval’s identity) is that
∑

S f̂
2(S) = 1 if f(x) takes

values only in {−1, 1}, i.e., f : {0, 1}n → {−1, 1}. The following fact is also immediate

from the definition of φ̂(S).
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Proposition 2.1. Let φ : {0, 1}n → R be given. Then

max
S⊆{1,2,...,n}

|φ̂(S)| ≤ 2−n‖φ‖1.

For k = 0, 1, 2, . . . , n, we introduce the linear operator Lk : R{0,1}n → R{0,1}n that

sends a function φ : {0, 1}n → R to the function Lk φ : {0, 1}n → R given by

(Lk φ)(x) =
∑

S∈Pn,k

φ̂(S)χS(x).

We refer to Lk φ as the degree-k homogeneous part of φ.

Note that when using the {−1, 1} representation, by the above discussion every func-

tion φ : {−1, 1}n → R has a unique representation as a multilinear polynomial

φ(x) =
∑

S⊆{1,2,...,n}

φ̂(S)
∏
i∈S

xi, (2.5.1)

where the real numbers φ̂(S) are the Fourier coefficients of f.

For any polynomial p ∈ R[x1, x2, . . . , xn], we let |||p||| denote the sum of the absolute

values of the coefficients of p. One easily verifies the well-known fact that |||·||| is a norm

on the polynomial ring R[x1, x2, . . . , xn].We identify a function φ : {−1, 1}n → R with

its unique representation (2.5.1) as a multilinear polynomial, to the effect that

|||φ||| =
∑

S⊆{1,2,...,n}

|φ̂(S)|

is the sum of the absolute values of the Fourier coefficients of φ. We will abuse the

notation |||φ||| as the sum of absolute values of the Fourier coefficients of φ under {0, 1}

representation as well.
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Proposition 2.2. For any functions φ, ψ : {0, 1}n → R and reals a, b,

|||aφ+ bψ||| ≤ |a| |||φ|||+ |b| |||ψ|||.

Proof. We have

|||aφ+ bψ||| =
∑

S⊆{1,2,...,n}

|aφ̂(S) + bψ̂(S)|

≤ |a|
∑

S⊆{1,2,...,n}

|φ̂(S)|+ |b|
∑

S⊆{1,2,...,n}

|ψ̂(S)|

= |a| |||φ|||+ |b| |||ψ|||,

where the first step uses the linearity of the Fourier transform. �

We also note the following submultiplicative property.

Proposition 2.3. For any functions φ, ψ : {0, 1}n → R,

|||φ · ψ||| ≤ |||φ||| |||ψ|||.

Proof. We have

φ · ψ =

 ∑
S⊆{1,2,...,n}

φ̂(S)χS

 ∑
T⊆{1,2,...,n}

ψ̂(T )χT


=

∑
S,T⊆{1,2,...,n}

φ̂(S)ψ̂(T )χ(S\T )∪(T\S).

Applying Proposition 2.2,

|||φ · ψ||| ≤
∑

S,T⊆{1,2,...,n}

|φ̂(S)| |ψ̂(T )|.

The right-hand side of this inequality is clearly |||φ||| |||ψ|||. �
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We will use the norm ||| · ||| in conjunction with the operator Lk to refer to the sum of

the absolute values of the Fourier coefficients of given order k:

|||Lk φ||| =
∑

S∈Pn,k

|φ̂(S)|.

2.6. Sign-representations

Let f : X → {0, 1} be a given Boolean function, for a finite subset X ⊂ Rn. The

threshold degree of f, denoted deg±(f), is the least degree of a real polynomial p

that represents f in sign: sgn p(x) = (−1)f(x) for each x ∈ X. The term “threshold

degree” appears to be due to Saks [108]. Equivalent terms in the literature include

“strong degree” [10], “voting polynomial degree” [81], “polynomial threshold function

degree” [97], and “sign degree” [32]. The ANDn function has threshold degree 1, as

the polynomial

p(x) = −
n∑
i=1

xi −
1

2
+ n

represents it in sign.

A closely related notion of the threshold degree is the approximate degree, for which we

are interested in polynomials that approximates f . In particular, for any ε ∈ [0, 1/2)

a polynomial p is said to ε-approximate f if

|f(x)− p(x)| ≤ ε, ∀x ∈ X.

The ε-approximate degree of f , denoted degε(f), is the minimum degree of a polyno-

mial p that ε-approximates f . Clearly, degε(f) is nonincreasing in ε for ε ∈ [0, 1/2),

and

deg±(f) = lim
ε↗ 1

2

degε(f).
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It is also not hard to show that for any constant 0 < δ < ε < 1/2, degε(f) =

Θ(degδ(f)), as essentially what we need is an S-shape polynomial of constant degree

that maps [0, ε] 7→ [0, δ], and [1−ε, 1] 7→ [1−δ, 1]. The following simple and ingenious

candidate is due to Buhrman et al. [31],

Bd(t) =
d∑

i=d d+1
2
e

(
d

i

)
ti(1− t)d−i.

This family of polynomials calculates the probability that there are more heads than

tails when flipping d random coins where each coin has independent probability of

t to be head. By Chernoff bound, Bd : [0, ε] 7→ [0, 2−Θε(d)]. In particular, take d =

O(− ln δ/(1 − 2ε)2), then the polynomial Bd(p) δ-approximates f where p is any

polynomial that ε-approximates f .

One of the first results on polynomial representations of Boolean functions was the

following tight lower bound on the threshold degree of the Minsky-Papert func-

tion [90]. The generalized Minsky–Papert function MPm,r : ({0, 1}r)m → {0, 1} is

given by MPm,r(x) =
∧m
i=1

∨r
j=1 xi,j. We abbreviate MPm = MPm,m2 , which is the

right setting of parameters for most of our applications.

Theorem 2.4 (Minsky and Papert). deg±(MPm) = Ω(m).

Three new proofs of this lower bound, unrelated to Minsky and Papert’s original

proof, were discovered recently in [122]. Threshold degree admits the following dual

characterization, obtained by appeal to linear programming duality.

23



Fact 2.5. Let f : X → {0, 1} be a given Boolean function on a finite subset X of

Euclidean space. Then deg±(f) ≥ d if and only if there exists ψ : X → R such that

(−1)f(x)ψ(x) ≥ 0, x ∈ X,

〈ψ, P 〉 = 0, ∀P : degP < d,

ψ 6≡ 0.

The function ψ acts as a witness for the threshold degree of f , and is called a dual

polynomial due to its origin in a dual linear program. Here we present a simple proof

for the case when X is {0, 1}n, using Gordan’s theorem [67].

Theorem 2.6 (Gordan’s Theorem). For any matrix M ∈ Rm×n, exactly one of the

following is true

(i) Mx = 0, for some nonzero x ∈ Rn and x ≥ 0,

(ii) yTA > 0, for some y ∈ Rm.

To apply Gordan’s Theorem, we translate deg±(f) ≥ d into the linear algebra lan-

guage. Note {χS : |S| < d} is a basis for the vector space spanned by polynomials of

degree less than d. Consider matrix M ∈ R([n]
<d)×{0,1}n , where

M = [(−1)f(x) · χS(x)]
S∈([n]

<d),x∈{0,1}n
.

No sign representing polynomial P for f of degree less than d, is equivalent to say

that no y = (yS)
S∈([n]

<d)
satisfies

yTM > 0.
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Therefore by Gordan’s Theorem, deg±(f) ≥ d if and only if there is φ : {0, 1}n → R,

φ 
 0, and∑
x∈{0,1}n

φ(x)(−1)f(x)χS(x) = 0, ∀S : |S| < d.

Take ψ = (−1)fφ, then Fact 2.5 is true. We refer the reader to [10, 97, 119] for a

detailed proof of Fact 2.5. The following equivalent statement is occasionally more

convenient to work with.

Fact 2.7. For every Boolean function f : X → {0, 1} on a finite subset X of Eu-

clidean space,

deg±(f) = max
µ:distribution on X

min
polynomial P :
〈(−1)f ·µ),P 〉6=0

degP. (2.6.1)

We now define a generalization of threshold degree inspired by the dual view in

Fact 2.7. For a function f : X → {0, 1} and a real number 0 ≤ γ ≤ 1, let

deg±(f, γ) = max
µ:distribution on X
µ≥γ/|X| on X

min
polynomial P :
〈(−1)f ·µ),P 〉6=0

degP. (2.6.2)

We call this quantity the γ-smooth threshold degree of f , in reference to the fact that

the maximization in (2.6.2) is over probability distributions µ that place on every

point of the domain at least a γ fraction of the weight the point would receive under

the uniform distribution. A glance at (2.6.1) and (2.6.2) reveals that deg±(f, γ) is

monotonically nonincreasing in γ, with the limiting case deg±(f, 0) = deg±(f).

Fact 2.8. For every nonconstant function f : X → {0, 1},

deg±

(
f,

1

2

)
≥ 1.
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Proof. Define µ = 1
2
µ0 + 1

2
µ1, where µi be the uniform probability distribution

on f−1(i). Then clearly 〈(−1)f · µ), c〉 = 0 for any nonzero constant c and µ ≥
1
2

max{µ0, µ1} ≥ 1
2|X| on X. �

2.7. Query complexity

For a Boolean function f : {0, 1}n → {0, 1}, the query complexity of f measures the

number of bits that we need to know algorithmically to determine the value of f .

Next, we give concrete definitions of the query complexity in different models.

2.7.1. Deterministic query complexity. A deterministic query algorithm of

function f is a decision tree. A decision tree is a binary tree T in which each leaf

is labeled with 0 or 1, and each inner node is labeled with some variable xi. Given

an input x ∈ {0, 1}n, the algorithm first query the variable labeled in the root.

Depending on the outcome of the query, the algorithm moves from the root to either

the left child or the right child, and query the variable in the corresponding child. The

algorithm repeats this procedure till reaching a leaf and outputs the label on that leaf.

The depth of a decision tree T , is the number of edges from the root to the furthest

leaf. We say T computes f if T outputs the correct value f(x) for all x ∈ {0, 1}n.

The deterministic query complexity of f , denoted Ddt(f), is the minimum depth of

a decision tree T that computes f . The superscript dt stands for “decision tree,” and

are used to distinguish from the deterministic communication complexity. Clearly

0 ≤ Ddt(f) ≤ n. For example Ddt(ANDn) = n, since when the input x = 1n, any

decision tree has to query all the variables to be sure there is no 0.

The above definition is for functions with domain {0, 1}n and range {0, 1}. But it is

clear that a similar definition works for function f : X1 × X2 × · · · × Xn → Y, for

arbitrary finite sets X1, X2, . . . , Xn and an arbitrary set Y .
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2.7.2. Randomized query complexity. Now we allow decision trees to access

random bits. There are different ways to define randomized decision trees. We adopt

the randomized decision trees with bounded-error, which is the counterpart of Monte

Carlo algorithms for Turing machines. In particular, a randomized decision tree is a

distribution µ on decision trees. Its depth is the largest depth of any decision tree

T ∈ supp(µ). An ε-error randomized decision tree for f outputs a correct answer

with probability at least 1− ε on any input, i.e.,

Pr
T∼µ

[T (x) = f(x)] ≥ 1− ε, ∀x ∈ {0, 1}n.

The randomized query complexity of f , denoted Rdt
ε (f), is the minimum depth of an

ε-error randomized decision tree for f . We omit ε when ε = 1/3.

Clearly, for any ε ≥ 0 and function f, Rdt
ε (f) ≤ Ddt(f). To see that the ran-

domized decision trees can be strictly more powerful, consider the MAJ3 problem.

Ddt(MAJ3) = 3, but Rdt(MAJ3) = 2. For the randomized decision tree, consider the

following algorithm:

(i) Take two random bits xi, xj (without repetition);

(ii) If xi = xj, output xi; otherwise output a random value of 0 or 1.

This algorithm makes no error for inputs 000 or 111. For input 110 (or any permu-

tations of 110), the algorithm outputs the correct answer with probability 2/3. To

exhibit a larger gap, a standard trick is to take function composition. Let

MAJ(i) = MAJ(i−1) ◦MAJ3, i = 2, 3, . . .

MAJ(1) = MAJ3.

A similar argument can be used to show that

Rdt(MAJ(d)) = O((Ddt(MAJ(d)))0.8927....
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For total functions f : {0, 1}n → {0, 1}, it is well-known that randomized and deter-

ministic query complexity are polynomially related due to Nisan [92].

Ddt(f) ≤ 27(Rdt(f))3.

Open Problem 2.9. What is the largest separation between Ddt and Rdt?

For partial functions f : {0, 1}n → {0, 1, ∗} though, things are quite different. This

is a common theme in the query world. Consider the gap majority problem

GapMAJ3n(x) =


0 ‖x‖1 ≤ n,

1 ‖x‖1 ≥ 2n,

∗ otherwise.

Then Ddt(GapMAJ3n) = Ω(n), as only when we see at least (n+ 1) 0s or (n+ 1) 1s,

we can safely determine the value of the gap majority problem. But

Rdt(GapMAJ3n) = 1,

i.e., query a random bit and output its value.

2.7.3. Quantum query complexity. Finally, we review the quantum query

algorithm. Before that, we first briefly discuss some basics of a quantum system. The

simplest quantum system consists of a single quantum bit. Its state is described by

a unit vector in C2 with orthonormal basis |0〉 and |1〉, corresponding to the classical

state of bit 0 and bit 1. In particular, the quantum bit in superposition of bit 0 and

bit 1 is represented by a unit column vector

|φ〉 = a|0〉+ b|1〉,
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for a, b ∈ C, such that |a|2 + |b|2 = 1. The amplitudes a and b have the classical

interpretation that when make a measurement of the quantum bit, with probability

of |a|2 the bit 0 will be observed and with probability of |b|2 the bit 1 will be observed.

More generally, an m-bit quantum system is described by C2m with basis

{|x〉 : x ∈ {0, 1}m}.

The elements in the basis correspond to the set of classical state of m bits. The m

quantum bits in superposition are described by a unit vector∑
x∈{0,1}m

ax|x〉,

and ‖a‖2 = 1

A quantum query algorithm uses a quantum system described by tensor product

I ⊗W , where the I = Cdlogne corresponds to the query indices, and W corresponds

to the workspace. So its state can be described by

|ψ〉 =
n∑
i=1

ai|i, wi〉,

where |wi〉 is a unit vector inW . To make a query, apply the query operator O, which

is a unitary transformation, defined as follows2,

O : |i, wi〉 7→ (−1)xi |i, wi〉.

A k query algorithm is the following sequence of operators applied on the initial state

|0, 0〉 (note that 0 here is the 0 vector in the corresponding spaces),

U0, O, U1, O, . . . , O, Uk,

2The effect of the operator O on the entire vector space can be generalized by linearity.
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where Ui can be arbitrary unitary transformations, corresponding to quantum com-

putations. After the running the algorithm, the final state is

|ψ〉 = UkO · · ·OU1OU0|0, 0〉.

To output, measure the last bit of |ψ〉.

A quantum query algorithm is said to compute f with error ε, if it outputs the correct

answer with probability at least 1 − ε on any input. The ε-error quantum query

complexity of f , denoted Qdt
ε (f), is the minimum number of queries of a quantum

query algorithm that computes f with error ε. We omit ε for ε = 1/3.

Quantum query algorithm is more powerful than the classical query algorithm.

The well-known Grover’s search algorithm shows that Qdt(ANDn) = O(
√
n), but

Rdt(ANDn) = Ω(n). Like many other measures in the query model, Qdt and Rdt are

also polynomially related for total functions. For partial functions, they can be ar-

bitrarily separated. We will discuss the relationship between quantum and classical

query complexity in more detail in Chapter 6.
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CHAPTER 3

Communication protocols and communication complexity

In this chapter, we define the communication protocol and provide a short introduc-

tion to the communication complexity. We will only cover the key definitions and

notations. A classical and excellent reference on communication complexity is the

monograph by Kushilevitz and Nisan [84]. A coverage on the more recent develop-

ment of this field is beautifully presented by Rao and Yehudayoff [102].

3.1. Communication models

3.1.1. Deterministic communication. We adopt the standard two-party

model of deterministic communication due to Yao [139]. In this model, Alice and

Bob receive inputs x ∈ X and y ∈ Y , respectively, where X and Y are some finite

sets fixed in advance. Their goal is to compute a given function f : X × Y → {0, 1}.

They communicate by sending each other symbols from a fixed alphabet Σ. The most

common alphabet is Σ = {0, 1}, but we will encounter others as well. The commu-

nication between Alice and Bob is governed by an agreed-upon protocol π. At any

given time, the protocol specifies, based on the sequence of symbols exchanged so

far between Alice and Bob, whether the communication is to continue and if so, who

should send the next symbol. This next symbol is also specified by the protocol, based

on the sender’s input as well as the sequence of symbols exchanged so far between

Alice and Bob. Denote the entire communication history of the protocol running by

π(x, y). The communication cost of the protocol π, denoted |π|, is the worst-case

number of transmissions, i.e., |π| = maxx,y |π(x, y)|. The output is determined by
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the entire communication history π(x, y). In particular, the protocol π has a inter-

pretation function out : Σ∗ → {0, 1}, and the output of π is out(π(x, y)). We say

that a protocol π computes f , if out(π(x, y)) = f(x, y) for all (x, y) ∈ X × Y. The

communication complexity of f , is the minimum communication cost of a protocol

that computes f . Consider the classical example, the equality problem,

EQ(x, y) =

1 x = y,

0 x 6= y.

A trivial protocol is the following: Alice sends Bob x, and Bob announces 1 if and

only if x = y. This is in fact the best we can do deterministically, thus,

D(EQ) = n+ 1. (3.1.1)

A protocol π is said to be in canonical form if the following two conditions hold:

(i) the number of symbols exchanged between Alice and Bob is an even integer and

is the same for all inputs x ∈ X and y ∈ Y ; (ii) Alice and Bob take turns sending

each other one symbol at a time, with Alice sending the first symbol. A moment’s

thought reveals that any protocol π can be simulated by a protocol in canonical form

with the same alphabet and at most double the communication cost.

A communication protocol π over alphabet Σ can be visualized in terms of a regular

tree of depth |π|, called the protocol tree. Every internal vertex of the protocol tree

has precisely |Σ| outgoing edges, each labeled with a distinct symbol of the alphabet.

A vertex of the protocol tree corresponds in a one-to-one manner to a state of the

protocol at some point in time. Specifically, the vertex reachable from the root via the

path v ∈ Σ∗ corresponds to the point in time when the symbols exchanged between

Alice and Bob so far are precisely v1, v2, . . . , v|v|, in that order. In particular, the root

vertex corresponds to the point in time just before the communication starts, and a
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leaf corresponds to a point in time when the communication has ended. Every internal

vertex of the protocol tree is said to be owned by either Alice or Bob, corresponding to

the identity of the speaker at that point in time. For a given input x ∈ X, the protocol

specifies a unique outgoing edge for every vertex owned by Alice, corresponding to the

symbol that she would send at that point in time with x as her input. Analogously,

for any y ∈ Y, the protocol specifies a unique outgoing edge for every vertex owned by

Bob. On any input pair x, y, Alice and Bob’s edges determine a unique root-to-leaf

path. Execution of the protocol corresponds to a walk down this unique root-to-leaf

path defined by Alice and Bob’s edges, and the output of the protocol is the label

on the corresponding leaf. Adopting this view of communication, we will henceforth

identify Alice’s input with a set of edges, one for each vertex that Alice owns; and

likewise for Bob. Observe that if the protocol is in canonical form, Alice and Bob’s

inputs are a set of outgoing edges for the even-depth vertices and a set of outgoing

edges for the odd-depth vertices, respectively, one such edge per vertex.

Finally, we make a remark on the key combinatorial property of a deterministic

protocol first observed by Yao [139].

Proposition 3.1. For any x, x′ ∈ X, y, y′ ∈ Y , if π(x, y) = π(x′, y′). Then,

π(x′, y) = π(x, y′) = π(x, y).

We refer to A×B a combinatorial rectangle or simply a rectangle for A ⊆ X,B ⊆ Y.

The above proposition implies that a deterministic protocol π partitions X × Y into

at most 2|π| rectangles according to all possible communication transcripts.

Sometimes the inputs are sampled from a prior distribution µ. In this case, it is

reasonable to allow the protocol to err in a small fraction of the inputs. We can
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define distributional complexity of f with respect to distribution µ as follows

Dµ
ε (f) = min{|π| | ∃ out : Σ∗ → {0, 1},

Pr
(x,y)∼µ

[out(π(x, y)) = f(x, y)] ≥ 1− ε}.

3.1.2. Randomized communication. In the randomized model, the parties

are provided with their own private source of unlimited random bits. The commu-

nication between Alice and Bob is governed by an agreed-upon protocol π and the

outcome of the random strings ra and rb owned by Alice and Bob, respectively. In par-

ticular, at any given time, the protocol π specifies, based on the sequence of symbols

exchanged so far between Alice and Bob, whether the communication is to continue

and if so, who should send the next symbol. This next symbol is specified by the

protocol, based on the sender’s input, the sender’s random string, and the sequence

of symbols exchanged so far. An ε-error protocol for f is one which on every input

pair (x, y), produces the correct answer f(x, y) with probability at least 1 − ε. The

ε-error randomized communication complexity of f, denoted Rε(f), is the least cost

of an ε-error randomized protocol for f . Since we can repeat a protocol for multiple

times using fresh random strings, and take the majority vote, it is immediate that for

any two constant 0 < ε < δ < 1/2, Rε(f) = Θ(Rδ(f)). This simple fact releases us

from worrying about the exact error parameter as long as it is a constant in (0, 1/2).

We use R(f) to denote R1/3(f), where 1/3 is chosen for aesthetic reason.

A variance of the randomized model is the public randomized communication model.

The main difference is that in the public randomized communication model, Alice

and Bob have a shared source of unlimited random bits. In this model, the shared

random string r replaces the role of the private random strings in the former model.

In particular, the next symbol is specified based on the shared random string r,

sender’s input and the communication history so far. A moment thought reveals that

34



a public random protocol can be viewed as a distribution on deterministic protocols.

It is clear that a protocol with public random bits can easily simulate a protocol with

private random sources without any effort. But it is not so obvious whether it is true

the other way around. Somewhat surprisingly, shared randomness has essentially

no effect on the randomized communication complexity R(f) for any f , due to the

well-known result by Newman [91]. Let Rpub
ε (f) be the communication complexity

of the public randomized communication complexity, Newman proved the following

relationship between Rpub
ε (f) and Rε(f).

Theorem 3.2 (Newman). Let f : {0, 1}n×{0, 1}n → {0, 1} be any Boolean function.

For every ε, δ > 0,

Rε+δ(f) ≤ Rpub
ε (f) +O

(
log n+ log

1

δ

)
.

The above theorem is very general. In essence, it proves that for any probabilistic

computation, O(log n + log 1/δ) number of random bits is sufficient at the cost of

increasing the error probability by at most δ (at a cost of computation).

An randomized protocol can be much more efficient than that of a deterministic pro-

tocol. We take the equality function as an example. Consider the following protocol:

(i) Alice and Bob use public randomness to sample z, z′ ∈ {0, 1}n,

(ii) Interpreting x, y, z, z′ as vectors in Fn2 , Alice sends 〈x, z〉 and 〈x, z′〉 to Bob,

(iii) Bob outputs 1 if and only if 〈x, z〉 = 〈y, z〉 and 〈x, z′〉 = 〈y, z′〉.

It is easy to verify that if x = y, then Bob always outputs 1. Otherwise Bob outputs

1 with probability of 1/4.

Yao made the following astonishing observation that connects the randomized com-

munication complexity and distributional communication complexity.
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Theorem 3.3 (Yao’s principle). Rpub
ε (f) = maxµD

µ
ε (f).

Finally, we mention the following proposition that generalizes Proposition 3.1 for the

randomized protocols.

Proposition 3.4. Let T be the set of all possible transcripts of protocol π. There are

functions px : T → [0, 1], qy : T → [0, 1] for all x ∈ X and y ∈ Y , such that

Pr[π(x, y) = τ ] = px(τ)qy(τ), ∀ τ ∈ T .

3.1.3. Unbounded-error communication. A particularly interesting situa-

tion is when the randomized protocols have error probability close to that of random

guessing, i.e., 1/2. There are two natural ways to define the communication complex-

ity of a problem f in this setting. The communication complexity of f with unbounded

error, introduced by Paturi and Simon [101], is the quantity

UPP(F ) = min
0<ε<1/2

Rε(F ). (3.1.2)

Here, the error is unbounded in the sense that it can be arbitrarily close to 1/2. To

emphasize this difference of allowed error, we sometimes refer to the the communica-

tion complexity with constant error as the bounded-error communication complexity.

In contrast to the bounded-error communication model discussed in the previous sec-

tion, it is important here that Alice and Bob have access only to their private random

sources. Otherwise they can solve any problem exchanging 2 bits by the following

protocol: Alice sends 1 if the public random string r = x, sends 0 otherwise. Bob out-

puts a uniformly random bit if r 6= x, otherwise he sends f(r, y). Clearly, this protocol

has success probability better than 1/2, and costs only 2 bits. The unbounded-error

communication occupies a special place in the study of communication because it is
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more powerful than almost any other standard model, e.g., the randomized commu-

nication model and the quantum communication model. Unbounded-error protocols

represent a frontier in communication complexity theory in that they are the most

powerful protocols for which explicit lower bounds are currently known.

Babai et al. [11] proposed an alternate quantity, which includes an additive penalty

term that depends on the error probability:

PP(f) = min
0<ε<1/2

{
Rε(f) + log

1
1
2
− ε

}
. (3.1.3)

This quantity is known as the communication complexity of f with weakly unbounded

error. It is clear that

1 ≤ UPP(f) ≤ PP(f) ≤ n+ 1

for every communication problem f , with an exponential gap achievable between the

two complexity measures [32, 113]. It is also clear that

PP(f) ≤ R(f) + 3.

An exponential gap is achieved by the disjointness problem

DISJn(x, y) = ¬
n∨
i=1

(xi ∧ yi).

The celebrated result due to Kalyanasundaram and Schnitger [75] proves that

R(DISJn) = Ω(n). On the other hand, it is not hard to see that PP(DISJn) =

O(log n).

3.1.4. Quantum communication. The quantum communication complexity

was first introduced by Yao [140]. As before, one considers the problem of solv-

ing a function f : X × Y → {0, 1}, with the inputs distributed between Alice and
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Bob. But now, Alice and Bob can exchange quantum bits, and take advantage of

quantum entanglement. There are various ways to define quantum communication

protocols. In this dissertation, we follow closely Razborov’s description [105]. We

will be working with the tensor product A⊗C ⊗B, where A,B, C are complex vector

spaces. A,B, C represent Alice’s workspace, Bob’s workspace, and the communication

channel respectively. C is a dimension 2 vector space with basis {|0〉, |1〉}. Initially,

the quantum system without prior entanglement has state

|φ0〉 = |x, 0〉|0〉|y, 0〉,

while the quantum system with prior entanglement has state

|φ0〉 =
1√
|E|

∑
e∈E

|x, 0, e〉|0〉|y, 0, e〉,

Here, |x, 0, e〉 ∈ A = X ⊗W ⊗ E and |y, 0, e〉 ∈ B = Y ⊗W ⊗ E , where X and Y are

the complex vector spaces describing the input sets X and Y, W corresponds to the

auxiliary quantum bits and E corresponds to the prior entanglements. A quantum

communication protocol can be described by a sequence of unitary operators acting

on A⊗ C ⊗ B :

U1 ⊗ IB, IA ⊗ U2, U3 ⊗ IB, . . . , IA ⊗ U2k,

where IA, IB are identity transformation in A and B, respectively, and Ui is a unitary

transformation in A ⊗ C for odd i and a unitary transformation in C ⊗ B for even

i. The transformation Ui corresponds to Alice (or Bob) making local computation

and then sending a quantum bit to Bob (or Alice). In the end of the protocol, the

quantum state is

|φ2k〉 = (IA ⊗ U2k) · · · (IA ⊗ U2)(U1 ⊗ IB)|φ0〉.
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The cost of the protocol is the length of the sequence, e.g., 2k here. To output,

measure C. Mathematically, let v be the projection of |φ2k〉 onto the subspace A ⊗

|1〉 ⊗ B. Then the protocol outputs 1 with probability ‖v‖2, and outputs 0 with

probability 1− ‖v‖2. The ε-error quantum communication complexity without prior

entanglement of function f , denoted Qε(f), is the cost of a quantum protocol that

outputs a correct answer with probability at least 1 − ε on any input x, y. We

abbreviate Q(f) = Q1/3(f). The corresponding quantum communication complexity

with prior entanglement is denoted by Q∗ε(f).

It is clear that Qε(f) ≤ Rε(f) for any function f and ε, as the quantum bits can

be used as private randomness. Quantum protocols can be strictly more powerful.

For example, the quantum communication complexity of the disjointness problem is

Θ(
√
n) [105, 1], while we have discussed that the disjointness problem has linear

randomized communication complexity. However, how much more power a quantum

protocol can have is not completely understood. It is a major open problem to deter-

mine if the quantum communication complexity and the randomized communication

complexity are polynomially related for total functions. A detailed discussion on this

issue is deferred to Chapter 6.

3.1.5. Multiparty communication. The two-party communication models

have analogues for three or more parties. In this dissertation, we will only be in-

terested in the number-on-forehead model of multiparty communication, introduced

by Chandra et al. [40]. The model features ` communicating players, tasked with

computing a Boolean function F : X1 × X2 × · · · × X` → {0, 1} for some finite sets

X1, X2, . . . , X`. A given input (x1, x2, . . . , x`) ∈ X1 × X2 × · · · × X` is distributed

among the players by placing xi, figuratively speaking, on the forehead of the ith

player (for i = 1, 2, . . . , `). In other words, the ith player knows the arguments
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x1, . . . , xi−1, xi+1, . . . , x` but not xi. The players communicate by sending broadcast

messages, taking turns according to a protocol agreed upon in advance.

In a randomized protocol, each of the players privately holds an unlimited supply of

uniformly random bits, which he can use along with his available arguments when

deciding what message to send at any given point in the protocol. The players’ objec-

tive is to compute F (x1, x2, . . . , x`). An ε-error protocol for F is one which, on every

input (x1, x2, . . . , x`), produces the correct answer F (x1, x2, . . . , x`) with probability

at least 1− ε. The cost of a protocol is the total bit length of the messages broadcast

by all the players in the worst case.1 The ε-error randomized communication com-

plexity of F, denoted Rε(F ), is the least cost of an ε-error randomized protocol for F .

As a special case of this model for ` = 2, one recovers the original two-party model.

As combinatorial rectangles are fundamental objects for two-party protocols, the

counterpart in the multiparty protocols is cylinder intersections. An `-dimensional

cylinder intersection is a function χ : X1 ×X2 × · · · ×X` → {0, 1} of the form

χ(x1, x2, . . . , x`) =
∏̀
i=1

χi(x1, . . . , xi−1, xi+1, . . . , x`),

where χi : X1×· · ·×Xi−1×Xi+1×· · ·×X` → {0, 1}. In other words, an `-dimensional

cylinder intersection is the product of ` functions with range {0, 1}, where the ith

function does not depend on the ith coordinate but may depend arbitrarily on the

other `−1 coordinates. Introduced by Babai et al. [12], cylinder intersections are the

fundamental building blocks of communication protocols and for that reason play a

central role in the theory. The 2-dimensional cylinder is a rectangle. A deterministic

protocol partitions the input space X1 ×X2 × · · · ×X` into cylinder intersections.
1 The contribution of a b-bit broadcast to the protocol cost is b rather than ` · b.
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3.2. Communication complexity lower bounds

In this section, we discuss several techniques to show strong communication lower

bounds. A common theme under these techniques is to relate the communication

complexity to some other measures easier to analyze. There are many other influ-

ential techniques to prove communication lower bounds like the rectangle bounds

and information complexity that are out of the scope of this dissertation. Interested

readers are referred to [86, 102].

3.2.1. Query-to-communication lifting. Query complexity are usually much

easier to analyze than the communication complexity. A powerful tool developed in

recent years transforms query complexity lower bounds to communication complexity

lower bounds in various models [64, 44, 65, 43]. The intuition behind this tool is very

simple. Let f : {0, 1}n → {0, 1} be any Boolean function with large query complexity.

Consider a small-size gadget g : {0, 1}` × {0, 1}` → {0, 1}, and the communication

problem f ◦ g : {0, 1}n` × {0, 1}n` → {0, 1},

f ◦ g(x, y) = f(g(x1, y1), g(x2, y2), . . . , g(xn, yn)).

A naïve communication protocol is to simulate the query algorithm for f : whenever

the algorithm queries the ith variable, Alice and Bob compute g(xi, yi) by communi-

cating at most ` bits. Thus,

D(f ◦ g) = O(` ·Ddt(f)),

R(f ◦ g) = O(` ·Rdt(f)).
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For a gadget g complicated enough that hides g(xi, yi) well, we expect that there is

no better protocol than the naïve protocol, thus,

D(f ◦ g) = Ω(` ·Ddt(f)),

R(f ◦ g) = Ω(` ·Rdt(f)).

Of course, this cannot be true for every gadget g. For example, if f and g are both

the parity function, then the communication complexity of
⊕n

i=1(xi ⊕ yi) is only a

constant, but the query complexity of the parity function is n.

Ideally, we want g to be a constant-size gadget. However, whether there is such a

gadget is still open. A well-studied function g in this line of research is the inner

product function IP` : {0, 1}` × {0, 1}` → {0, 1}, given by IP`(u, v) =
⊕`

i=1(ui ∧ vi).

In particular, Chattopadhyay, Filmus, Koroth, Meir, and Pitassi [43, Theorem 1]

prove that

R1/3(f ◦ IPc logn) = Ω(Rdt
1/3(f) log n) (3.2.1)

for every (possibly partial) function f on {0, 1}n, where c > 1 is an absolute constant.

Open Problem 3.5. Find a constant-size gadget g : {0, 1}c × {0, 1}c, such that for

any f : {0, 1}n → {0, 1},

D(f ◦ g) = Ω(Ddt(f)).

3.2.2. Discrepancy and Sign-rank. For a Boolean function F : X1×X2×· · ·×

X` → {0, 1} and a probability distribution µ on X1 ×X2 × · · · ×X`, the discrepancy

of F with respect to µ is given by

discµ(F ) = max
χ

∣∣∣∣∣ ∑
x∈X1×X2×···×X`

(−1)F (x)µ(x)χ(x)

∣∣∣∣∣ ,
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where the maximum is over cylinder intersections χ. The minimum discrepancy over

all distributions is denoted

disc(F ) = min
µ

discµ(F ).

The discrepancy method [47, 12, 84] is a classic technique that bounds randomized

communication complexity from below in terms of discrepancy.

Theorem 3.6 (Discrepancy method). Let F : X1×X2×· · ·×X` → {0, 1} be a given

communication problem. Then

2Rε(F ) ≥ 1− 2ε

disc(F )
.

This theorem is an immediate corollary of the following proposition on distributional

communication complexity.

Proposition 3.7. For any distribution µ,

2D
µ
ε (F ) ≥ 1− 2ε

discµ(F )
. (3.2.2)

Proof. Let π be any deterministic protocol that realizes Dµ
ε (F ). Then π partitions

the input space into N ≤ 2D
µ
ε (F ) cylinder intersections, χ1, χ2, . . . , χN . Sum the error

within each cylinder intersection,

ε ≥
N∑
i=1

1

2

(
µ(χi)−

∣∣∣∣∣ ∑
x∈X1×X2×···×X`

(−1)F (x)µ(x)χi(x)

∣∣∣∣∣
)

≥ 1

2
− 1

2
N discµ(F ).

Rearranging the terms, we obtain (3.2.2). �

Combining Theorem 3.6 with the definition of PP(F ) gives the following corollary.
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Corollary 3.8. Let F : X1 × X2 × · · · × X` → {0, 1} be a given communication

problem. Then

PP(F ) ≥ log
2

disc(F )
.

In fact, discrepancy characterizes the communication complexity with weakly un-

bounded error PP fully due to Klauck [76],

PP(F ) ≤ O

(
log

1

disc(F )
+ log n

)
.

Let me pause and make a remark that the discrepancy method also gives a lower

bound for the quantum communication complexity with or without prior entangle-

ment, see [83, 89].

The sign-rank of a real matrix A ∈ Rn×m with nonzero entries is the least rank of a

matrix B ∈ Rn×m such that sgnAi,j = sgnBi,j for all i, j. In general, the sign-rank

of a matrix can be vastly smaller than its rank. For example, consider the following

nonsingular matrices of order n ≥ 3:

1
1

1
1

−1

. . .
1

1

 ,


1
1

1
−1

−1

. . .
1

1

 .

These matrices have sign-rank at most 2 and 3, respectively. Indeed, the first matrix

has the same sign pattern as [2(j − i) + 1]i,j. The second has the same sign pattern

as [〈vi, vj〉 − (1 − ε)]i,j, where v1, v2, . . . , vn ∈ R2 are arbitrary pairwise distinct unit

vectors and ε is a suitably small positive real, cf. [101, Section 5]. As a matter

of notational convenience, we extend the notion of sign-rank to Boolean functions

f : X × Y → {0, 1} by defining rk±(f) = rk±(Mf ), where Mf = [(−1)f(x,y)]x∈X,y∈Y
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is the matrix associated with f . A remarkable fact, due to Paturi and Simon [101],

is that the sign-rank of a two-party communication problem fully characterizes its

unbounded-error communication complexity.

Theorem 3.9 (Paturi and Simon). Let F : X×Y → {0, 1} be a given communication

problem. Then

log rk±(F ) ≤ UPP(F ) ≤ log rk±(F ) + 2.

The first inequality is essentially a reformulation of Proposition 3.4. The second

inequality follows similar ideas as expressing the sign matrix as a sum of rank one

matrices uT ·v by rank decomposition and then interpreting uT (x), v(y) as the expec-

tations of sending −1 or 1 (under suitable normalization).

As Corollary 3.8 and Theorem 3.9 show, the study of communication with unbounded

and weakly unbounded error is in essence the study of discrepancy and sign-rank.

3.2.3. The pattern matrix method. Discrepancy and sign-rank are difficult to

analyze from first principles. The pattern matrix method, developed in [114, 116], is

a technique that transforms lower bounds for polynomial approximation into bounds

on discrepancy, sign-rank, and various other quantities in communication complexity.

For our discrepancy bounds, we use the following special case of the pattern matrix

method [123, Theorem 5.7 and equation (119)].

Theorem 3.10 (Sherstov). Let f : {0, 1}n → {0, 1} be given. Consider the `-party

communication problem F : ({0, 1}nm)` → {0, 1} given by F = f ◦ NORm ◦ AND`.

Then

disc(F ) ≤
(
c2``√
m

)deg±(f)/2

,
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where c > 0 is a constant independent of n,m, `, f.

We note that the case ` = 2 of Theorem 3.10 is vastly easier to prove than the

general statement; this two-party result can be found in [125, Theorem 7.3 and

equation (7.3)]. For our sign-rank lower bounds, we use the following theorem implicit

in [117].

Theorem 3.11 (Sherstov, implicit). Let f : {0, 1}n → {0, 1} be given. Suppose that

deg±(f, γ) ≥ d, where γ and d are positive reals. Fix an integer m ≥ 2 and define

F : {0, 1}mn × {0, 1}mn → {0, 1} by F = f ◦ORm ◦ AND2. Then

rk±(F ) ≥ γ
⌊m

2

⌋d/2
.

For the reader’s convenience, we give a detailed proof of Theorem 3.11 in Section 5.7.
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CHAPTER 4

Communication against noise

In this chapter, we discuss our contribution to communication in noisy environments.

We will study how to encode a protocol so that the encoded protocol can tolerate a

maximum fraction of adversarial corruptions of insertions, deletions and substitutions.

This is the interactive analogue of error correcting codes with optimal corruption rate.

4.1. Introduction

Consider the classical problem of transmitting a message over an unreliable channel.

In its most general formulation, the problem features an omniscient and computa-

tionally unbounded adversary who controls the communication channel and can alter

a small constant fraction of symbols that pass through the channel. The choice of

symbols to corrupt is up to the adversary; the only guarantee is an a priori bound

on the fraction of altered symbols, called the corruption rate. The sender’s objective

is to encode the message using a somewhat longer string so as to always allow the

receiver to recover the original message. Shannon’s problem is the subject matter

of coding theory and has been extensively studied. In particular, for any constant

ε > 0, it is known [74] how to encode an n-bit message using a string of O(n) symbols

from a constant-size alphabet such that the receiving party will recover the original

message whenever the fraction of corrupted symbols is at most 1
2
− ε. In seminal

work, Schulman [109, 110, 111] considered a generalization of Shannon’s problem

to the interactive setting. Here, two parties Alice and Bob communicate back and

forth according to a communication protocol agreed upon in advance. Alice and Bob
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privately hold inputs X and Y, respectively, which dictate their behavior through-

out the communication protocol. As before, the communication channel is controlled

by an adversary who can change a small constant fraction of symbols as they transit

through the channel. The goal is to overcome these corruptions by cleverly simulating

the original protocol with some redundant communication, as follows. The simula-

tion leaves Alice and Bob with a record of symbols exchanged between them, where

Alice’s record will generally disagree with Bob’s due to interference by the adversary.

Nevertheless, they each need to be able to determine, with no further communication,

the sequence of symbols that would have been exchanged in the original protocol on

the inputs X and Y in question. Ideally, Alice and Bob’s simulation should use an

alphabet of constant size and have communication cost within a constant factor of

the original protocol.

A naïve solution to Schulman’s problem is for Alice and Bob to encode their indi-

vidual messages with an error-correcting code developed for Shannon’s setting. This

approach fails spectacularly because the adversary is only restricted by the total

number of corruptions rather than the number of corruptions on a per-message ba-

sis. In particular, the adversary may choose a specific message from Alice to Bob

and corrupt all symbols in it. As a result, the naïve solution cannot tolerate any

corruption rate beyond 1
m
, where m is the total number of messages. Remark-

ably, Schulman [111] was able to show how to simulate any communication protocol

with corruption rate up to 1
240
, using a constant-size alphabet and a constant-factor

overhead in communication. Interactive coding has since evolved into a highly ac-

tive research area with a vast literature on virtually every aspect of the problem,

e.g., [98, 26, 61, 20, 55, 80, 63, 24, 22, 62, 71, 51, 59, 6], from corruption

rate to communication overhead to computational complexity. We refer the reader to
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Gelles [58] for an up-to-date survey. Of particular interest to us is the work of Braver-

man and Rao [26], who proved that any communication protocol can be simulated

in Schulman’s model with corruption rate up to 1
4
− ε for any ε > 0, and established

a matching impossibility result for corruption rate 1
4
. Analogous to Schulman [111],

the simulation due to Braverman and Rao [26] uses a constant-size alphabet and

increases the communication cost only by a constant factor.

In the canonical model discussed above, the adversary manipulates the communica-

tion channel by altering symbols. This type of manipulation is called a substitution. In

a recent paper, Braverman, Gelles, Mao, and Ostrovsky [25] proposed a far-reaching

generalization of the canonical model, whereby the adversary can additionally manip-

ulate the channel by inserting and deleting symbols. As Braverman et al. point out,

insertions and deletions are considerably more difficult to handle than substitutions

even in the one-way setting of coding theory. To borrow their example, Schulman

and Zuckerman’s polynomial-time coding and decoding algorithms [112] for insertion

and deletion errors can tolerate a corruption rate of roughly 1
100
, in contrast to the

corruption rate of 1
2
− ε or 1

4
− ε (depending on the alphabet size) achievable in the

setting of substitution errors alone [74]. As their main result, Braverman et al. [25]

prove that any communication protocol can be simulated in the generalized model

with substitutions, insertions, and deletions as along as the corruption rate does not

exceed 1
18
− ε, for an arbitrarily small constant ε > 0. Analogous to previous work,

the simulation of Braverman et al. uses a constant-size alphabet and increases the

communication cost only by a multiplicative constant.

Braverman et al. [25] and Gelles [58] posed the problem of determining the high-

est possible corruption rate that can be tolerated in the generalized model, and of

achieving that optimal rate for every protocol. We give a detailed solution to this

problem, showing that any protocol can be simulated with corruption rate up to 1
4
−ε
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for any ε > 0. Recall that this corruption tolerance is optimal even in the setting of

substitutions alone.

4.1.1. The indels model. Following previous work, we focus on communication

protocols in canonical form. In such a protocol, the communication proceeds in

rounds. The number of rounds is the same on all inputs, and each round involves

Alice sending a single symbol to Bob and Bob sending a symbol back to Alice. The

canonical form assumption is without loss of generality since any protocol can be

brought into canonical form at the expense of doubling its communication cost.

We now describe the model of Braverman et al. [25] in more detail. Naïvely, one

may be tempted to give the adversary the power to delete or insert any symbol at

any time. A moment’s thought reveals that such power rules out any meaningful

computation. Indeed, deleting a single symbol en route from Alice to Bob will stall

the communication, forcing both parties to wait on each other indefinitely to send

the next symbol. Conversely, inserting a symbol into the communication channel

may result in crosstalk, with both parties trying to send a symbol at the same time.

Braverman et al. [25] proposed a natural and elegant formalism, to which we refer

as the BGMO model, that avoids these abnormalities. In their model, deletions and

insertions occur in pairs, with every deletion immediately followed by an insertion.

In other words, the BGMO model gives the adversary the capability to intercept

any symbol σ in transit from one party to the other and insert a spurious symbol

σ′ in its place. Crucially, the adversary is free to decide which party will receive the

inserted symbol. This makes it possible for the adversary to carry out two types of

attacks, illustrated in Figure 4.1.1. In a substitution attack, the inserted symbol is

routed the same way as the original symbol. Such an attack is precisely equivalent

to a substitution in Schulman’s model [111]. In an out-of-sync attack, on the other

hand, the inserted symbol is delivered to the sender of the original symbol. From
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Figure 4.1.1. A substitution attack (top) and an out-of-sync attack (bottom).

the sender’s point of view, an out-of-sync attack looks like a response from the other

party, whereas that other party does not even know that any communication has

taken place and continues to wait for an incoming symbol. Braverman et al. [25]

examine a variety of candidate models, including some that are clock-driven rather

than message-driven, and demonstrate that the BGMO model is essentially the only

reasonable interactive formalism that allows deletions and insertions. It is important

to note here that even though deletions and insertions in the BGMO model occur

in pairs, the corruption pattern experienced by any given party can be an arbitrary

sequence of deletions and insertions.

4.1.2. Our results. For the purposes of defining the corruption rate, a deletion-

insertion pair in the BGMO model counts as a single corruption. This means that

with corruption rate δ, the adversary is free to carry out as many as δM attacks,

where M is the worst-case number of sent symbols. The main result of our work

is the following theorem, where |π| denotes the worst-case communication cost of a

protocol π.
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Theorem 4.1. Fix an arbitrary constant ε > 0, and let π be an arbitrary protocol

with alphabet Σ. Then there exists a simulation for π with alphabet size O(1) and

communication cost O(|π| log |Σ|) that tolerates corruption rate 1
4
− ε in the BGMO

model.

Theorem 4.1 matches an upper bound of 1
4
on the highest possible corruption rate,

due to Braverman and Rao [26], which holds even if the adversary is restricted to

substitution attacks.

Theorem 4.1 is particularly generous in that it gives the adversary a flat budget of δM

attacks, where δ is the corruption rate andM is the maximum number of sent symbols

over all executions. Due to out-of-sync attacks, the number of symbols sent in a given

execution may be substantially smaller than M. This can happen, for example, if the

adversary uses out-of-sync attacks to force one of the parties to exit before his or her

counterpart has reached the end of the simulation. In such case, the actual ratio of the

number of attacks to the number of sent symbols may substantially exceed δ. This

leads us to consider the following alternate formalism: with normalized corruption

rate (εsubs, εoos), the number of substitution attacks and out-of-sync attacks in any

given execution must not exceed an εsubs and εoos fraction, respectively, of the number

of symbols sent in that execution. In this setting, we prove:

Theorem 4.2 (Normalized corruption rate). Fix an arbitrary constant ε > 0, and

let π be an arbitrary protocol with alphabet Σ. Then there exists a simulation for

π with alphabet size O(1) and communication cost O(|π| log |Σ|) that tolerates any

normalized corruption rate (εsubs, εoos) in the BGMO model with

εsubs +
3

4
εoos ≤

1

4
− ε.
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We show that Theorem 4.2, too, is optimal with respect to the normalized corruption

rates that it tolerates (Section 4.5.9). In the interesting special case when the adver-

sary is restricted to out-of-sync attacks, Theorem 4.2 tolerates normalized corruption

rate 1
3
− ε for any ε > 0. This contrasts with the maximum possible corruption rate

that can be tolerated with substitutions alone, namely, 1
4
− ε. Thus, there is a pre-

cise technical sense in which substitution attacks are more powerful than out-of-sync

attacks. As we will discuss shortly, however, the mere presence of out-of-sync attacks

greatly complicates the analysis and requires a fundamentally different approach.

In Theorems 4.1 and 4.2, each player computes the transcript of the simulated protocol

based on his or her entire record of sent and received symbols, from the beginning of

time until the communication stops. In Section 4.5.8, we adapt Theorem 4.1 to the

setting where Alice and Bob wish to know the answer by a certain round, according

to each player’s own counting. In particular, Braverman et al. [25] required each

player to know the answer by round (1− 2δ)N , where N is the maximum number of

rounds and δ is the corruption rate. With that requirement, we give a simulation that

tolerates corruption rate 1
6
− ε for any ε > 0, which is optimal by the impossibility

result in [25, Theorem G.1].

4.1.3. Background on interactive coding. In what follows, we review rel-

evant previous work [111, 26, 25] on interactive coding and contrast it with our

approach. A key tool in this line of research is a tree code, a coding-theoretic prim-

itive developed by Schulman [111]. Let Σin and Σout be nonempty finite alphabets.

A tree code is any length-preserving map C : Σ∗in → Σ∗out with the property that for

any input string s ∈ Σ∗in and any i = 1, 2, 3, . . . , the first i symbols of the codeword

C(s) are completely determined by the first i symbols of the input string s. A tree

code has a natural representation as an infinite tree in which every vertex has arity

|Σin| and every edge is labeled with a symbol from Σout. To compute the codeword
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corresponding to a given input string s = s1s2 . . . sk, one starts at the root and walks

down the tree for k steps, choosing at the ith step the branch that corresponds to

si. The sought codeword C(s), then, is the concatenation of the edge labels along

this path. Tree codes are well-suited for encoding interactive communication because

Alice and Bob must compute and send symbols one at a time, based on each other’s

responses, rather than all at once at the beginning of the protocol. In more de-

tail, if Alice has used a tree code C to send Bob s1, s2, . . . , sk−1 and now wishes to

send him sk, she need only send the kth symbol of C(s1s2 . . . sk) rather than all of

C(s1s2 . . . sk). This works because by the defining properties of a tree code, the first

k − 1 symbols of C(s1s2 . . . sk) are precisely C(s1s2 . . . sk−1) and are therefore known

to Bob already. To additionally cope with adversarial substitutions, Schulman used

tree codes in which different codewords are “far apart.” More precisely, for any two

input strings s, s′ ∈ Σ∗in of equal length with s1s2 . . . sk = s′1s
′
2 . . . s

′
k but sk+1 6= s′k+1,

the codewords C(s) and C(s′) disagree in a 1−α fraction of positions beyond the kth.

Schulman [111] showed the existence of such tree codes for any α > 0, where the size

of the output alphabet depends only on α and the input alphabet. Figure 4.1.2 (left)

offers an illustration of the distance property for tree codes: the concatenation of the

labels on the solid path should disagree with the concatenation of the labels on the

dashed path in a 1 − α fraction of positions. Finally, when attempting to recover

the codeword from a corrupted string y ∈ Σ∗out, one outputs the codeword of length

|y| that is closest to y in Hamming distance. This recovery procedure produces the

true codeword whenever y is sufficiently close to some codeword in suffix distance, a

distance on strings that arises in a natural way from tree code properties.

We now review protocol terminology. Fix a deterministic protocol π in canonical

form that Alice and Bob need to simulate on their corresponding inputs X and Y .

Let Σ and n denote the alphabet and the communication cost of π, respectively.
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Associated to π is a tree of depth n called the protocol tree for π. Each vertex in

this tree corresponds to the state of the protocol at some point in time, with the root

corresponding to the initial state before any symbols have been exchanged, and each

leaf corresponding to a final state when the communication has ended. Each internal

vertex has arity |Σ|, corresponding to all possible symbols that can be transmitted at

that point. Execution of π corresponds to a walk down the protocol tree, as follows. A

given input X for Alice makes available precisely one outgoing edge for every internal

vertex of even depth, corresponding to the symbol that she would send if the execution

were to arrive at that vertex. Similarly, an input Y for Bob makes available precisely

one outgoing edge for every internal vertex of odd depth. To execute π, Alice and Bob

walk down the protocol tree one edge at a time, at each step selecting the edge that is

dictated by the input of the player whose turn it is to speak. In this chapter, we will

assume that output of the protocol π on a given pair of inputs X, Y, is the complete

sequence of symbols exchanged between Alice and Bob on that pair of inputs. We

make this somewhat usual assumption here because in this chapter our focus is to

encode a protocol instead of computing a function.

We emphasize that there is no relation whatsoever between protocol trees and trees

representing tree codes. They are structurally unrelated and play entirely different

roles in the simulation of a protocol over an unreliable channel.

Given protocols π and Π with input space X × Y , we say that Π simulates π if

π(X, Y ) = f(Π(X, Y )) for some fixed function f and all inputs X ∈ X and Y ∈ Y .

To illustrate, any protocol π with alphabet Σ can be simulated in the natural manner

by a protocol Π with the binary alphabet {0, 1} and communication cost |Π| ≤

|π|max{1, dlog |Σ|e}. Observe that the “simulates” relation on protocols is transitive.

A protocol π is said to be in canonical form if the following two conditions hold:

(i) the number of symbols exchanged between Alice and Bob is an even integer and
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Figure 4.1.2. Distance constraints for codewords in a tree code (left)
and an edit distance tree code (right).

is the same for all inputs X ∈ X and Y ∈ Y ; (ii) Alice and Bob take turns sending

each other one symbol at a time, with Alice sending the first symbol. A moment’s

thought reveals that any protocol π can be simulated by a protocol in canonical form

with the same alphabet and at most double the communication cost.

In this chapter, we view the transfer of an alphabet symbol from one party to the other

as an atomic operation to which we refer as a transmission. We also intentionally

avoid the term “message” in this chapter because it is ambiguous as to the length of

the content.

4.1.4. The Braverman–Rao simulation. We are now in a position to describe

the simulation of Braverman and Rao [26] for the model with adversarial substitu-

tions. Using the tree view of communication, we can identify Alice’s input X with

a set EX of outgoing edges for the protocol tree vertices at even depths, one such

edge per vertex. Analogously, Bob’s input Y corresponds to a set EY of outgoing

edges for the vertices at odd depths. Execution of π, then, corresponds to identifying

the unique root-to-leaf path made up of edges in EX ∪ EY . In Braverman and Rao’s
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simulation, all communication is encoded and decoded using a tree code with the

parameter α > 0 set to a small constant. The simulation amounts to Alice and Bob

taking turns sending each other edges from their respective sets EX and EY . When it

is Alice’s turn to speak, she decodes the edge sequence received so far and attempts

to extend the path made up of her sent and received edges by another edge from EX ,

communicating this new edge to Bob. Bob acts analogously. When the communica-

tion stops, Alice decodes her complete sequence of received edges, identifies the first

prefix of that sequence whose edges along with EX contain a root-to-leaf path, and

takes this root-to-leaf path to be the transcript of π on the given pair of inputs. Bob,

again, acts analogously.

In the described simulation, the edge that a player sends at any given point may be

irrelevant but it is never incorrect. In particular, Alice and Bob make progress in

every round where they correctly decode the edge sequences that they have received

so far. Braverman and Rao use a relation between suffix distance and Hamming

distance to argue that with overall corruption rate 1
4
− ε, Alice decodes her received

edge sequence correctly more often than half of the time, and likewise for Bob. This

means that there are a considerable number of rounds where Alice and Bob both

decode their received sequences correctly. It follows that at some point t∗, Alice

and Bob will have exchanged every edge in the root-to-leaf path in EX ∪ EY . As a

final ingredient, the authors of [26] argue that the adversary’s remaining budget for

corruptions beyond time t∗ cannot “undo” this progress, in the sense that at the end

of the communication Alice and Bob will correctly decode a prefix that contains the

root-to-leaf path in EX ∪ EY .

4.1.5. The BGMO simulation. We now describe the simulation of Braver-

man et al. [25] in the BGMO model with substitutions, insertions, and deletions.

The authors of [25] draw inspiration from the classic work of Levenshtein [87], who
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developed codes that allow recovery from insertions and deletions in the noninterac-

tive setting. Recall that when coding for substitution errors, one uses codewords that

are far apart in Hamming distance [74]. Analogously, Levenshtein used codewords

that are far apart in edit distance, defined for a pair of strings as the minimum number

of insertions and deletions needed to transform one string into the other. To handle

interactive communication, then, it is natural to start as Braverman et al. do with a

tree code in which the codewords are far apart in edit distance rather than Hamming

distance. They authors of [25] discover, however, that it is no longer sufficient to

have distance constraints for pairs of codewords of the same length. Instead, for any

two paths of arbitrary lengths that cross to form a lambda shape, such as the solid

and dashed paths in Figure 4.1.2 (right), the associated codeword segments need to

be far apart in edit distance. Braverman et al. establish the existence of such edit

distance tree codes and develop a notion of suffix distance for them, thus providing a

sufficient criterion for the recovery of the codeword from a corrupted string.

Algorithmically, the BGMO simulation departs from Braverman and Rao’s in two

ways. First, all communication is encoded and decoded using an edit distance tree

code. Second, a different mechanism is used to decide which leaf of the protocol

tree for π to output, whereby each player keeps a tally of the number of times any

given leaf has been reached during the simulation and outputs the leaf with the

highest tally. The resulting analysis is quite different from [26], out-of-sync attacks

being the main source of difficulty. Braverman et al. start by showing that each

player correctly decodes his or her received sequence of edges often enough over the

course of the simulation. This does not imply progress, however. Indeed, all of

Alice’s correct decodings may conceivably precede all of Bob’s, whereas progress is

only guaranteed when the players’ correct decodings are interleaved. To prove that

this interleaving takes place, Braverman et al. split the simulation into n progress
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intervals, corresponding to the length of the longest segment recovered so far from

the root-to-leaf path in EX ∪ EY . They use an amortized analysis to argue that the

number of unsuccessful decodings per interval is small on the average, allowing Alice

and Bob to reach the leaf on the root-to-leaf path in EX ∪ EY at some point in the

simulation. They finish the proof by arguing that the players subsequently revisit

this leaf often enough that its tally outweighs that of any other leaf.

4.1.6. Our approach. There are several obstacles to improving the corruption

tolerance from 1
18
− ε in Braverman et al. [25] to an optimal 1

4
− ε. Some of these

obstacles are of a technical nature, whereas others require a fundamental shift in

approach and analysis. In the former category, we develop edit distance tree codes

with stronger guarantees. Specifically, Braverman et al. use tree codes with the

property that for any two paths that cross to form a lambda shape in the code

tree, the edit distance between the associated codeword segments is at least a 1− α

fraction of the length of the longer path. We prove the existence of tree codes that

guarantee a stronger lower bound on the edit distance, namely, a 1 − α fraction of

the sum of the lengths of the paths. This makes intuitive sense because the typical

edit distance between randomly chosen strings of lengths `1 and `2 over a nontrivial

alphabet is approximately `1 + `2 rather than max{`1, `2}; cf. Proposition 4.4. Our

second improvement concerns the decoding process. The notion of suffix distance used

by Braverman et al. is not flexible enough to support partial recovery of a codeword.

We define a more general notion that we call k-suffix distance and use it to give a

sufficient criterion for the recovery of the first k symbols of the codeword from a

corrupted string. This makes it possible to replace the tally-based output criterion of

Braverman et al. with a more efficient mechanism, whereby Alice and Bob compute

their output based on a prefix on the received edge sequence rather than the entire

sequence.
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The above technical improvements fall short of achieving an optimal corruption rate

of 1
4
− ε. The fundamental stumbling block is the presence of out-of-sync attacks. For

one thing, Alice and Bob’s transmissions can now be interleaved in a complex way,

and the basic notion of a round of communication is no longer available. Out-of-sync

attacks also break the symmetry between the two players in that it is now possible

for one of them to receive substantially fewer symbols than the other. Finally, by

directing a large number of out-of-sync attacks at one of the players, the adversary

can force the simulation to stop early and thereby increase the effective error rate

well beyond 1
4
−ε. These are good reasons to doubt the existence of a simulation that

tolerates corruption rate 1
4
− ε with substitutions, insertions, and deletions.

Our approach is nevertheless based on the intuition that out-of-sync attacks should

actually help the analysis because they spread the brunt of a corruption between the

two players rather than heaping it all on a single player. Indeed, the deletion that

results from an out-of-sync attack only affects the receiver, whereas the insertion only

affects the sender. This contrasts with substitution attacks, where the deletions and

insertions affect exclusively the receiver. With this in mind, convexity considerations

suggest that out-of-sync attacks may actually be less damaging overall than substitu-

tion attacks. To bear out this intuition, we introduce a “virtual” view of communica-

tion that centers around the events experienced by Alice and Bob (namely, insertions,

deletions, and successful deliveries) rather than the symbols that they send. In this

virtual view, the length of a time interval and the associated error rate are defined in

terms of the number of alternations in events rather than in terms of the number of

sent symbols. Among other things, the virtual view restores the symmetry between

Alice and Bob and makes it impossible for the adversary to shorten the simulation

using out-of-sync attacks. By way of analysis, we start by proving that corruption

rate 1
4
−ε translates into virtual corruption rate 1

4
−Ω(ε). Next, we split the simulation
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into n progress intervals, corresponding to the length of the longest segment recovered

so far from the root-to-leaf path in EX ∪ EY , and a final interval that encompasses

the remainder of the simulation. We bound the virtual length of each interval in

terms of the number of corruptions and successful decodings. We then contrast this

bound with the virtual length of the overall simulation, which unlike actual length is

never smaller than the simulation’s worst-case communication complexity. Using the

previously obtained 1
4
− Ω(ε) upper bound on the virtual corruption rate, we argue

that Alice and Bob successfully output the root-to-leaf path in EX ∪ EY when their

communication stops.

4.2. Preliminaries

We start with a review of the technical preliminaries.

4.2.1. Edit distance. Recall that the asterisk ∗ is a reserved symbol that does

not appear in any alphabet Σ in this manuscript. For a string v ∈ (Σ ∪ {∗})∗,

we let ∗(v) and ∗(v) denote the number of asterisks and non-asterisk symbols in v,

respectively:

∗(v) = |{i : vi = ∗}|,

∗(v) = |{i : vi 6= ∗}|.

In particular, ∗(v)+∗(v) = |v|.We let 6 ∗(v) stand for the string of length ∗(v) obtained

from v by deleting the asterisks. For example, 6 ∗(∗ab∗aa) = abaa and 6 ∗(∗) = ε for

any alphabet symbols a, b.
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An alignment for a given pair of strings s, r ∈ Σ∗ is a pair of strings S,R ∈ (Σ∪{∗})∗

with the following properties:

|S| = |R|,

6 ∗(S) = s,

6 ∗(R) = r,

Ri 6= ∗ ∨ Si 6= ∗ (i = 1, 2, 3, . . . , |S|),

(Ri 6= ∗ ∧ Si 6= ∗) =⇒ Ri = Si (i = 1, 2, 3, . . . , |S|).

To better distinguish alignments from ordinary strings, we reserve uppercase symbols

for the former and lowercase for the latter. We write S || R to indicate that S and

R are an alignment for some pair of strings. For an alignment S || R, the strings

S|A, R|A for any given subset A of indices also form an alignment, to which we refer

as a subalignment of S || R.

The notion of a string alignment arises in an auxiliary capacity in the context of edit

distance. Specifically, the edit distance between strings s, r ∈ Σ∗ is denoted ED(s, r)

and is given by

ED(s, r) = min
S||R
{∗(S) + ∗(R)},

where the minimum is over all alignments for s, r. Letting LCS(s, r) denote the length

of the longest common subsequence of s and r, we immediately have

ED(s, r) = |s|+ |r| − 2 LCS(s, r). (4.2.1)

The following equivalent definition is frequently useful: ED(s, r) is the minimum

number of insertion and deletion operations necessary to transform s into r. In this

equivalence, an alignment S || R represents a specific way to transform s into r,
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indicating the positions of the insertions (Si = ∗, Ri 6= ∗), deletions (Si 6= ∗, Ri = ∗),

and unchanged symbols (Si = Ri 6= ∗). The operational view of edit distance shows

that it is a metric, with all strings s, r, t obeying

ED(s, r) = ED(r, s), (4.2.2)

ED(s, r) + ED(r, t) ≤ ED(s, t). (4.2.3)

Another property of edit distance is as follows.

Proposition 4.3. For any strings u, v ∈ Σ∗,

ED(u, v) ≥ ||u| − |v||.

In particular,

ED(u, v) = ||u| − |v||

whenever u is a subsequence of v or vice versa.

Proof. The proposition is immediate from (4.2.1). An alternate approach is to appeal

to the operational view of edit distance, as follows. An insertion or deletion changes

the length of a string by at most 1. Therefore, at least max{|u| − |v|, |v| − |u|} =

||u| − |v|| operations are needed to transform u into v. If one of the strings is a

subsequence of the other, then either of them can clearly be transformed into the

other using ||u| − |v|| deletions or ||u| − |v|| insertions. �

By definition, the edit distance between a pair of strings of lengths n and m is at

most n+m. We now show that this trivial upper bound is essentially tight when the

strings are chosen uniformly at random over an alphabet of nonnegligible size.
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Proposition 4.4. For any nonnegative integers n and m and any 0 < α ≤ 1,

P
u∈Σn
v∈Σm

[ED(u, v) ≤ (1− α)(n+m)] ≤

(
e

α
√
|Σ|

)α(n+m)

.

Proof. We may assume that

e

α
√
|Σ|
≤ 1, (4.2.4)

the proposition being trivial otherwise. Letting ` = dα(n+m)/2e, we have

P
u∈Σn
v∈Σm

[ED(u, v) ≤ (1− α)(n+m)] = P
u∈Σn
v∈Σm

[LCS(u, v) ≥ `]

≤
(
n

`

)(
m

`

)
· |Σ|

` · |Σ|n−` · |Σ|m−`

|Σ|n+m

≤
(
n+m

2`

)
· 1

|Σ|`

≤

(
e (n+m)

2`
· 1√
|Σ|

)2`

≤

(
e

α
√
|Σ|

)2dα(n+m)/2e

≤

(
e

α
√
|Σ|

)α(n+m)

,

where the first and last steps follow from (4.2.1) and (4.2.4), respectively. �

4.2.2. Suffix distance. We now discuss several other measures of distance for

alignments and strings. For an alignment S || R, define

∆(S,R) =
∗(S) + ∗(R)

∗(S)
.
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This quantity ranges in [0,∞], with the extremal values taken on. For example,

∆(ε, ε) = ∆(a, a) = 0 and ∆(∗, a) = ∞, where a is any alphabet symbol. The

definition of ∆ is motivated in large part by its relation to edit distance:

Fact 4.5. For any alignment S || R with ∆(S,R) <∞,

ED(6 ∗(S), 6 ∗(R)) ≤ ∆(S,R) · ∗(S).

Proof. Immediate from the definitions of ED and ∆. �

The suffix distance for an alignment S || R is given by

SD(S,R) = max
i≥1

∆(S≥i, R≥i).

This notion was introduced recently by Braverman et al. [25], inspired in turn by an

earlier notion of suffix distance due to Schulman [111]. In our work, we must consider

a more general quantity yet. Specifically, we define SDk(S,R) for 0 ≤ k ≤ ∞ to be

the maximum ∆(S≥i, R≥i) over all indices i for which ∗(S<i) < k, with the convention

that SDk(S,R) = 0 for k = 0. As functions, we have

0 = SD0 ≤ SD1 ≤ SD2 ≤ SD3 ≤ · · · ≤ SD∞ = SD . (4.2.5)

We generalize the above definitions to strings s, r ∈ Σ∗ by letting

SD(s, r) = min
S||R

SD(S,R), (4.2.6)

SDk(s, r) = min
S||R

SDk(S,R), (4.2.7)

where in both cases the minimum is over all alignments S || R for s, r. Since there are

only finitely many alignments for any pair of strings s and r, the quantities (4.2.6)

and (4.2.7) can be computed in finite time.
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4.2.3. Trees and tree codes. In a given tree, a rooted path is any path that

starts at the root of the tree. The predecessors of a vertex v are any of the vertices on

the path from the root to v, including v itself. We analogously define the predecessors

of an edge e to be any of the edges of the rooted path that ends with e, including e

itself. A proper predecessor of a vertex v is any predecessor of v other than v itself;

analogously for edges. In keeping with standard practice, we draw trees with the root

at the top and the leaves at the bottom. Accordingly, we define the depth of a vertex

v as the length of the path from the root to v. Similarly, the depth of an edge e is the

length of the rooted path that ends with e. We say that a given vertex v is deeper

than another vertex u if the depth of v is larger than the depth of u; and likewise for

edges.

Fix alphabets Σin and Σout. A tree code is any length-preserving map C : Σ∗in → Σ∗out

such that the first i symbols of the output are completely determined by the first i

symbols of the input. Formally,

|C(x)| = |x|,

(C(x))≤i = C(x≤i), i = 0, 1, 2, . . . ,

for all x ∈ Σ∗in. Recall that the codewords of C are the elements of C(Σ∗in), i.e., the

strings y ∈ Σ∗out such that y = C(x) for some x. A tree code can be represented

as an infinite rooted tree in which each node has precisely |Σin| outgoing edges, and

each edge is labeled with a symbol from Σout. To compute C(x) for a given string

x ∈ Σ∗in, one starts at the root and walks down the tree for |x| steps, taking the edge

corresponding to xi in the ith step. Then C(x) is the concatenation of the |x| edge

labels, in the order they were encountered during the walk. If there is an a priori

bound n on the length of the input string, as in this manuscript, it is sufficient to
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work with the restriction of the tree code to strings of length up to n. We refer to

such a restriction as a tree code of depth n.

To allow decoding in the presence of errors, structural properties of a tree code must

ensure that the encodings of distinct strings are sufficiently far apart. How this is

formalized depends on the kinds of errors that must be tolerated. Previous work

has considered substitution errors [111, 26] and more recently insertions and dele-

tions [25]. We work in the latter setting and adopt structural constraints similar to

those in [25].

Definition 4.6 (α-violation). Fix a tree code C : Σ∗in → Σ∗out and a real 0 ≤ α < 1. A

quadruple (A,B,D,E) of vertices in the tree representation of C form an α-violation

if:

(i) B is the deepest common predecessor of D and E;

(ii) A is any predecessor of B; and

(iii) ED(AD,BE) < (1−α)(|AD|+ |BE|), where AD ∈ Σ∗out is the concatenation

of the code symbols along the path from A to D, and analogously BE ∈ Σ∗out

is the concatenation of the code symbols along the path from B to E.

An α-good code is any tree code C for which no vertices A,B,D,E in its tree repre-

sentation form an α-violation.

Definition 4.6 is illustrated in Figure 4.2.1. This definition strengthens an earlier

formalism due to Braverman et al. [25], in which the inequality ED(AD,BE) <

(1− α) max{|AD|, |BE|} played the role of our constraint (iii). The strengthening is

essential to the tight results of our work.
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A

B

E

D

Figure 4.2.1. A quadruple of vertices A,B,D,E involved in an α-violation.

Remark 4.7. Observe that A,B,D,E can form an α-violation for 0 ≤ α < 1 only

when

D 6= E,

B 6= E.

Indeed, suppose that one or both of these conditions fail. Then BE = ε and therefore

ED(AD,BE) = ED(AD, ε)

= |AD|

= |AD|+ |BE|

≥ (1− α)(|AD|+ |BE|),

where the second step follows from Proposition 4.3.

As the next observation shows, an α-good code allows for the unique decoding of

every codeword.
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Fact 4.8. Let C : Σ∗in → Σ∗out be any α-good code, where 0 ≤ α < 1. Then C is

one-to-one.

Proof. It will be convenient to prove the contrapositive. Let C : Σ∗in → Σ∗out be a tree

code such that

C(x′) = C(x′′), (4.2.8)

x′ 6= x′′ (4.2.9)

for some strings x′, x′′ ∈ Σ∗in. Let x be the longest common prefix of x′ and x′′.

Consider the vertices B,D,E in the tree representation of C that correspond to the

input strings x, x′, x′′ ∈ Σ∗in, respectively. Then

ED(BD,BE) = 0 < (1− α)(|BD|+ |BE|),

where the first and second steps in the derivation follow from (4.2.8) and (4.2.9),

respectively. Thus, the quadruple (B,B,D,E) forms an α-violation in C. �

The following theorem, proved using the probabilistic method, ensures the existence

of α-good codes with good parameters.

Theorem 4.9. For any alphabet Σin, any 0 < α < 1, and any integer n ≥ 0, there is

an α-good code C : Σ∗in → Σ∗out of depth n with

|Σout| =
⌈

(10|Σin|)1/α e

α

⌉2

.

This theorem and its proof are adaptations of an earlier result due to Braverman et

al. [25]. For the reader’s convenience, we provide a complete and self-contained proof

of Theorem 4.9 in Section 4.3.2.
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4.2.4. The corruption model. We adopt the corruption model introduced by

Braverman et al. [25]. In this model, the communication channel between Alice

and Bob is controlled by an omniscient and computationally unbounded adversary.

In particular, the adversary knows Alice and Bob’s protocol and their inputs. The

adversary can interfere with a transmission in two different ways, illustrated in Fig-

ure 4.1.1. In a substitution attack, the adversary intercepts the sender’s symbol σ and

replaces it with a different symbol σ′, which is then delivered to the receiver. In an

out-of-sync attack, the adversary intercepts the sender’s symbol σ, discards it, and

then sends a spurious symbol σ′ back to the sender in lieu of a response. Both a sub-

stitution attack and an out-of-sync attack involve the deletion of a symbol from the

channel followed immediately by the insertion of a symbol; what makes these attacks

different is how the inserted symbol is routed. On arrival, symbols manipulated by

the adversary are indistinguishable from correct deliveries. As a result, Alice and Bob

cannot in general tell on receipt of a transmission if it is corrupted. We remind the

reader that a transmission is an atomic operation from the standpoint of interference

by the adversary: either a transmission is delivered correctly and in full, or else an

attack takes place and the transmission is considered to be corrupted.

Execution of a protocol is now governed not only by Alice and Bob’s inputs but

also by the adversary’s actions. Our objective is to faithfully simulate any protocol

π with only a constant-factor increase in communication cost. Our simulations will

all be in canonical form, with Alice and Bob taking turns sending one symbol at a

time. There are two immediate benefits to this strict alternation. First, it guarantees

that the adversary cannot force crosstalk, with Alice and Bob attempting to send a

transmission at the same time. Second, canonical form guarantees that the adversary

cannot cause Alice and Bob both to stall, i.e., wait indefinitely on each other to send

the next message. In particular, canonical form ensures that at least one of the parties
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is able to run the protocol to completion. The adversary may still force one of the

parties to stall, e.g., by carrying out an out-of-sync attack during the next-to-last

transmission. We consider an execution of the protocol to be complete as soon as the

communication has stopped, due to Alice or Bob (or both) terminating.

With the adversary present, we must revisit the notion of protocol output. We de-

fine the output of a player in a particular execution to be the complete sequence

of symbols, ordered chronologically, that player sends and receives over the course

of the execution. There is a minor technicality to address regarding which received

symbols are counted toward a player’s output. Due to out-of-sync attacks, Alice and

Bob need not always be in agreement about how many rounds of communication

they have completed. As a result, it may happen that one of the players expects

the communication to continue when the other has already exited. In that case, the

latter player may have one last symbol addressed to him which he or she will never

retrieve from the communication channel. Since that symbol is not accessible to the

player, we do not count it toward his or her input. With this minor clarification, we

are prepared for formalize our notion of an interactive coding scheme.

Definition 4.10 (Coding scheme). Let π be a given protocol with input space X×Y .

We say that protocol Π is an interactive coding scheme for π that tolerates corruption

rate ε if:

(i) Π has input space X × Y and is in canonical form;

(ii) when Π is executed on a given pair of inputs (X, Y ) ∈ X ×Y , the adversary

is allowed to subject any transmission in Π to a substitution attack or out-

of-sync attack, up to a total of at most ε|Π| attacks;

(iii) there exist functions f ′, f ′′ such that for any pair of inputs (X, Y ) ∈ X × Y

and any allowable behavior by the adversary, Alice’s output a and Bob’s

output b satisfy f ′(a) = f ′′(b) = π(X, Y ).
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In this formalism, the functions f ′ and f ′′ allow Alice and Bob to interpret their

respective outputs as an output of the simulated protocol π, with the requirement

that these interpretations by Alice and Bob match the actual output of π on the

corresponding pair of inputs.

The previous definition gives the adversary a budget of ε|Π| attacks, where |Π| is the

maximum length of any execution of Π. This flat budget applies even to executions

that are significantly shorter than |Π|, as may happen due to out-of-sync attacks.

This motivates us to define a second model, where the number of attacks in any given

execution is bounded by a fraction of the actual length of that execution.

Definition 4.11 (Coding scheme with normalized corruption rate). Let π be a given

protocol with input space X × Y . We say that protocol Π is an interactive coding

scheme for π that tolerates normalized corruption rate (εsubs, εoos) if:

(i) Π has input space X × Y and is in canonical form;

(ii) when Π is executed on a given pair of inputs (X, Y ) ∈ X ×Y , the adversary

is allowed to subject any transmission in Π to a substitution attack or out-

of-sync attack, where

− the number of substitution attacks in any execution is at most an εsubs

fraction of the total number of transmissions in that execution, and

− the number of out-of-sync attacks in any execution is at most an εoos

fraction of the total number of transmissions in that execution;

(iii) there exist functions f ′, f ′′ such that for any pair of inputs (X, Y ) ∈ X × Y

and any allowable behavior by the adversary, Alice’s output a and Bob’s

output b satisfy f ′(a) = f ′′(b) = π(X, Y ).

In this chapter, we will obtain an interactive coding scheme that achieves optimal

corruption tolerance in both models (Definition 4.10 and 4.11).
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4.3. Auxiliary results

We now prove a number of technical results on suffix distance and tree codes that

are used in the design and analysis of our interactive coding schemes. Some of these

results are new and some are adapted from previous work [111, 26, 25].

4.3.1. Bounds for suffix distance. Here, we collect several lower and upper

bounds on suffix distance. We start with a proposition that gives bounds for align-

ments in terms of their subalignments.

Proposition 4.12. Let S ′ || R′ and S ′′ || R′′ be given alignments. Then:

(i) ∆(S ′S ′′, R′R′′) ≤ max{∆(S ′, R′),∆(S ′′, R′′)};

(ii) ∆(S ′S ′′, R′R′′) ≥ min{∆(S ′, R′),∆(S ′′, R′′)};

(iii) SD(S ′S ′′, R′R′′) ≤ max{SD(S ′, R′), SD(S ′′, R′′)};

(iv) SDk(S
′S ′′, R′R′′) ≤ max{SDk(S

′, R′),∆(S ′′, R′′)} for k ≤ ∗(S ′).

Proof. (i), (ii) There are two cases to consider. If ∗(S ′) > 0 and ∗(S ′′) > 0, we have

∆(S ′S ′′, R′R′′) =
∗(S ′S ′′) + ∗(R′R′′)

∗(S ′S ′′)

=
∗(S ′) + ∗(R′)
∗(S ′) + ∗(S ′′)

+
∗(S ′′) + ∗(R′′)
∗(S ′) + ∗(S ′′)

=
∗(S ′)

∗(S ′) + ∗(S ′′)
·∆(S ′, R′) +

∗(S ′′)
∗(S ′) + ∗(S ′′)

·∆(S ′′, R′′).

In other words, ∆(S ′S ′′, R′R′′) is a weighted average of ∆(S ′, R′) and ∆(S ′′, R′′) and

therefore lies between the minimum and maximum of these quantities.

For the complementary case, by symmetry we may assume that ∗(S ′) = 0. If S ′ = ε,

then ∆(S ′S ′′, R′R′′) = ∆(S ′′, R′′) and therefore (i) and (ii) both hold. If S ′ 6= ε, then

we immediately have ∆(S ′, R′) =∞ and ∆(S ′S ′′, R′R′′) ≥ ∆(S ′′, R′′), whence (i) and

(ii), respectively.
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(iii) We have

SD(S ′S ′′, R′R′′) = max
i

∆((S ′S ′′)≥i, (R
′R′′)≥i)

= max{max
i

∆(S ′′≥i, R
′′
≥i),max

i
∆(S ′≥iS

′′, R′≥iR
′′)}

≤ max{max
i

∆(S ′′≥i, R
′′
≥i),max

i
∆(S ′≥i, R

′
≥i),∆(S ′′, R′′)}

= max{max
i

∆(S ′′≥i, R
′′
≥i),max

i
∆(S ′≥i, R

′
≥i)}

= max{SD(S ′′, R′′), SD(S ′, R′)},

where the third step uses (i).

(iv) The proof is similar to the previous item:

SDk(S
′S ′′, R′R′′) = max

i
{∆((S ′S ′′)≥i, (R

′R′′)≥i) : ∗((S ′S ′′)<i) < k}

= max
i
{∆(S ′≥iS

′′, R′≥iR
′′) : ∗(S ′<i) < k}

≤ max
i
{max{∆(S ′≥i, R

′
≥i),∆(S ′′, R′′)} : ∗(S ′<i) < k}

= max{SDk(S
′, R′),∆(S ′′, R′′)},

where the second step is valid because k ≤ ∗(S ′) and in particular i ≤ |S ′|, whereas

the third step uses (i). �

The following generic lower bound on suffix distance will also be useful.

Proposition 4.13. Let k > 0 be given. Then for all r ∈ Σ∗ and s ∈ Σ+,

SDk(s, r) ≥ 1− |r|
|s|
. (4.3.1)
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Proof. Fix an arbitrary alignment S || R for s, r. Then

SDk(S,R) ≥ ∆(S,R)

=
∗(S) + ∗(R)

∗(S)

=
∗(S) + ∗(R)

|s|

=
∗(S) + ∗(S) + |s| − |r|

|s|

≥ |s| − |r|
|s|

,

where the next-to-last step uses ∗(S) + |s| = ∗(R) + |r|. �

4.3.2. Existence of Good Tree Codes. The purpose of this section is to prove

Theorem 4.9 on the existence of α-good codes, which we now restate for the reader’s

convenience.

Theorem 4.14. For any alphabet Σin, any 0 < α < 1, and any integer n ≥ 0, there

is an α-good code C : Σ∗in → Σ∗out of depth n with

|Σout| =
⌈

(10|Σin|)1/α e

α

⌉2

. (4.3.2)

Our treatment is a reworked and simplified version of an argument of Braverman et

al. [25], who proved the existence of a closely related family of tree codes.

We fix α for the rest of the proof and define Σout to be the alphabet of consecutive

natural numbers, with cardinality given by (4.3.2). For strings u and v, we write

u � v to mean that ED(u, v) < (1 − α)(|u| + |v|). For a tree code C : Σ∗in → Σ∗out of

depth n and a string u ∈ Σ∗in, we let Cu denote the tree code Cu : Σ∗in → Σ∗out of depth

n− |u| given by Cu(v) = (C(uv))>|u|.
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Our proof centers around two inductively defined families C0, C1, C2, . . . , Cn, . . . and

C∗0 , C∗1 , C∗2 , . . . , C∗n, . . . , where Cn and C∗n are sets of tree codes of depth n. As a base

case, we let C0 = C∗0 be the family whose only member is the tree code ε 7→ ε, which

is by definition the only tree code of depth 0. Assuming that C0, C1, C2, . . . , Cn−1 and

C∗0 , C∗1 , C∗2 , . . . , C∗n−1 have been constructed, we define Cn to be the family of all tree

codes C : Σ∗in → Σ∗out of depth n such that Cσ ∈ C∗n−1 for all σ ∈ Σin, and define C∗n
to be the family of all α-good codes in Cn. To settle Theorem 4.9, it remains to prove

that each C∗n is nonempty. We will in fact prove the following stronger claim:

|C∗n|
|Cn|
≥ 1

2
, n = 0, 1, 2, 3, . . . . (4.3.3)

We will argue by induction on n. The base case n = 0 is trivial. For the inductive

step, fix n ≥ 1 arbitrarily and assume that |C∗i |/|Ci| ≥ 1/2 for i = 0, 1, 2, . . . , n− 1. A

key technical element of our analysis is the following observation.

Claim 4.15. Let u, v, w ∈ Σ∗in be given, where v≤1 6= w≤1. Then

P
C∈Cn

[C(uv) � Cu(w)] ≤
(

1

5|Σin|

)|u|+|v|+|w|
.

The hypothesis v≤1 6= w≤1 above amounts to saying that the longest common prefix

of v and w is the empty string.
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Proof of Claim 4.15. The claim follows from the following derivation, whose steps we

will justify shortly:

P
C∈Cn

[C(uv) � Cu(w)] ≤ 2|u| P
z∈Σ

|u|
out

C∈Cn−|u|

[zC(v) � C(w)] (4.3.4)

= 2|u| P
z∈Σ

|u|
out

C′,C′′∈Cn−|u|

[zC ′(v) � C ′′(w)] (4.3.5)

≤ 2|u|+|v| P
z∈Σ

|u|
out

z′∈Σ
|v|
out

C′′∈Cn−|u|

[zz′ � C ′′(w)] (4.3.6)

≤ 2|u|+|v|+|w| P
z∈Σ

|u|
out

z′∈Σ
|v|
out

z′′∈Σ
|w|
out

[zz′ � z′′] (4.3.7)

≤ 2|u|+|v|+|w|

(
e

α
√
|Σout|

)α(|u|+|v|+|w|)

(4.3.8)

≤ 1

(5|Σin|)|u|+|v|+|w|
. (4.3.9)

Inequality (4.3.4) is trivially true for u = ε. To verify validity for |u| ≥ 1, observe

that

P
C∈Cn

[C(uv) � Cu(w)] = P
z1∈Σout
C∈C∗n−1

[z1C(u≥2v) � Cu≥2
(w)]

≤ P
z1∈Σout
C∈Cn−1

[z1C(u≥2v) � Cu≥2
(w)] · |Cn−1|

|C∗n−1|

≤ P
z1∈Σout
C∈Cn−1

[z1C(u≥2v) � Cu≥2
(w)] · 2,

where the last two steps use use C∗n−1 ⊆ Cn−1 and |C∗n−1| ≥ |Cn−1|/2. Applying this

maneuver an additional |u| − 1 times settles (4.3.4). The next step, (4.3.5), is valid
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because the longest common prefix of v and w is the empty string and therefore C(v)

and C(w) are independent. Steps (4.3.6) and (4.3.7) can be verified in a manner

identical to (4.3.4). The final steps (4.3.8) and (4.3.9) follow from Proposition 4.4

and (4.3.2), respectively. �

Armed with Claim 4.15, we are now in a position to complete the inductive step. Our

objective is to show that |C∗n|/|Cn| ≥ 1/2, or equivalently that a uniformly random

code C ∈ Cn has an α-violation with probability at most 1/2. Recall that an α-

violation in C is a quadruple of vertices (A,B,D,E) in the tree representation of C

with the following properties:

(i) B is the deepest common predecessor of D and E;

(ii) A is a predecessor of B;

(iii) AD � BE, where AD ∈ Σ∗out and BE ∈ Σ∗out denote the concatenation of

the code symbols along the path from A to D and the path from B to E,

respectively.

We further deduce that

(i) A is the root;

(ii) B 6= E.

The former holds because the codes in C∗n−1 have no α-violations, and the latter follows

from Remark 4.7. These structural constraints allow us to identify an α-violation

(A,B,D,E) in C in a one-to-one manner with a triple of strings u, v, w ∈ Σ∗in such

that v≤1 6= w≤1, w 6= ε, and C(uv) � Cu(w). Applying the union bound over all such
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triples u, v, w,

P
C∈Cn

[C has an α-violation]

≤
∑
u∈Σ∗in:
|u|<n

∑
v∈Σ∗in:
|v|≤n−|u|

∑
w∈Σ+

in:
|w|≤n−|u|,
w≤1 6=v≤1

P
C∈Cn

[C(uv) � Cu(w)].

Appealing to Claim 4.15 and simplifying,

P
C∈Cn

[C has an α-violation]

≤
∑
u∈Σ∗in:
|u|<n

∑
v∈Σ∗in:
|v|≤n−|u|

∑
w∈Σ+

in:
|w|≤n−|u|,
w≤1 6=v≤1

(
1

5|Σin|

)|u|+|v|+|w|

≤
∑
u∈Σ∗in

∑
v∈Σ∗in

∑
w∈Σ+

in

(
1

5|Σin|

)|u|+|v|+|w|

=
∞∑
i=0

∞∑
j=0

∞∑
k=1

1

5i+j+k

=
1

5
· 1(

1− 1
5

)3

<
1

2
.

The final inequality is equivalent to |C∗n|/|Cn| > 1/2, completing the inductive step.

We have settled (4.3.3) and thereby proved Theorem 4.9.

4.3.3. Longest prefix decoding. In interactive coding, a sequence of symbols

is encoded with a tree code and transmitted over an unreliable channel. On the

receiving end, an attempt is then made to decode the sequence. The encoding and

decoding are fundamentally different in that the former is fully determined by the

tree code, whereas the latter allows for several reasonable approaches. In contrast

79



to the work of Braverman et al. [25], our interactive coding schemes use longest

prefix decoding, whereby the receiver attempts to correctly decode as long a prefix

of the original sequence as possible. The following key theorem relates the length

of such a prefix to the suffix distance between the original sequence and its received

counterpart.

Theorem 4.16. Fix an α-good code C : Σ∗in → Σ∗out with 0 < α < 1. Consider a

string r ∈ Σ∗out and codewords s′, s′′ of C with

SDk(s
′, r) < 1− α,

SDk(s
′′, r) < 1− α.

Then

s′≤k = s′′≤k. (4.3.10)

Previous work [25] settled a special case of Theorem 4.16 for k =∞, corresponding to

the correct decoding of the entire sequence. The extension to arbitrary k is essential

to the optimal interactive coding schemes in our work.

Proof of Theorem 4.16 (cf. Braverman et al. [25]). Let s be the longest common pre-

fix of s′ and s′′. For the sake of contradiction, assume that (4.3.10) fails. Then

s′ 6= s′′, (4.3.11)

|s| < k. (4.3.12)

We will show that these two conditions force an α-violation in C, contrary to the

theorem hypothesis.
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Fix alignments S ′ || R′ and S ′′ || R′′ for the string pairs s′, r and s′′, r, respectively,

such that

SDk(S
′, R′) < 1− α, (4.3.13)

SDk(S
′′, R′′) < 1− α. (4.3.14)

Let i′, i′′ ≥ 0 be integers with

s = 6 ∗(S ′≤i′), (4.3.15)

s = 6 ∗(S ′′≤i′′). (4.3.16)

It follows from (4.3.11) that

∗(S ′>i′) + ∗(S ′′>i′′) > 0. (4.3.17)

Observe also that r contains both 6 ∗(R′>i′) and 6 ∗(R′′>i′′) as suffixes, which means that

one of those strings is a suffix of the other. Without loss of generality, assume that

6 ∗(R′′>i′′) is a suffix of 6 ∗(R′>i′) and fix an integer j′′ ≥ 0 such that

j′′ ≤ i′′, (4.3.18)

6 ∗(R′′>j′′) = 6 ∗(R′>i′). (4.3.19)

It follows from (4.3.12) and (4.3.15) that ∗(S ′≤i′) < k. Analogously, (4.3.12),

(4.3.16), and (4.3.18) give ∗(S ′′≤j′′) < k. Therefore, the suffix distance bounds (4.3.13)

and (4.3.14) guarantee that

∆(S ′>i′ , R
′
>i′) < 1− α, (4.3.20)

∆(S ′′>j′′ , R
′′
>j′′) < 1− α. (4.3.21)
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In addition, (4.3.17) and (4.3.18) imply that

∗(S ′>i′) + ∗(S ′′>j′′) > 0. (4.3.22)

Now

ED(6 ∗(S ′>i′), 6 ∗(S ′′>j′′))

≤ ED(6 ∗(S ′>i′), 6 ∗(R′>i′)) + ED(6 ∗(R′>i′), 6 ∗(S ′′>j′′))

= ED(6 ∗(S ′>i′), 6 ∗(R′>i′)) + ED(6 ∗(S ′′>j′′), 6 ∗(R′>i′))

= ED(6 ∗(S ′>i′), 6 ∗(R′>i′)) + ED(6 ∗(S ′′>j′′), 6 ∗(R′′>j′′))

≤ ∆(S ′>i′ , R
′
>i′) · ∗(S ′>i′) + ∆(S ′′>j′′ , R

′′
>j′′) · ∗(S ′′>j′′)

< (1− α)(∗(S ′>i′) + ∗(S ′′>j′′)), (4.3.23)

where the first four steps follow from (4.2.3), (4.2.2), (4.3.19), and Fact 4.5, respec-

tively, and the final step is immediate from (4.3.20)–(4.3.22).

It remains to interpret our findings in terms of the tree representation of C. Let

A,B,D,E be the vertices reached by following the paths 6 ∗(S ′′≤j′′), s, s′′, s′, respectively,

from the root of the tree. Then (4.3.23) is equivalent to ED(BE,AD) < (1−α)(|BE|+

|AD|), which is the promised α-violation. �

We are now in a position to describe our decoding algorithm and relate its decod-

ing guarantees to the suffix distance between the original sequence and its received

counterpart.

Theorem 4.17. Let C : Σ∗in → Σ∗out be an α-good code, 0 < α < 1. Then there is an

algorithm DecodeC,α : Σ∗out → Σ∗out that runs in finite time and obeys

(DecodeC,α(r))≤k = s≤k (4.3.24)
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for any real 0 ≤ k ≤ ∞, any codeword s, and any string r ∈ Σ∗out with SDk(s, r) <

1− α.

Proof. For a codeword s and a string r, define

K(s, r) = max{k ∈ N ∪ {∞} : SDk(s, r) < 1− α}.

The maximization on the right-hand side is over a nonempty set that contains k = 0,

so that K(s, r) is well-defined for every s, r pair. The algorithm is the natural one: on

input r, the output of DecodeC,α is any s∗ ∈ arg maxsK(s, r), where s ranges over

all codewords of C. To verify (4.3.24), let s be any codeword with SDk(s, r) < 1− α.

Then the algorithm output s∗ obeys SDk(s
∗, r) < 1 − α and hence s∗≤k = s≤k by

Theorem 4.16.

It remains to show that DecodeC,α can be implemented to run in finite time. Clearly,

computing K(s, r) for any pair of strings s and r takes finite time. To find a codeword

in arg maxsK(s, r), it is suffices to consider codewords of length at most r/α because

longer codewords s satisfy K(s, r) = 0 by Proposition 4.13. �

4.3.4. Frequency of good decodings. In the analysis of interactive coding

schemes, one typically needs to argue that there are many points in time when the

receiving party is able to correctly decode the sequence of symbols transmitted so far.

We estimate the number of such “good decodings” using the following technical fact,

closely analogous to previous work [26, 25].

Proposition 4.18. Fix an alignment S || R and define

G = {i : Si = Ri 6= ∗},

D = {i : Si 6= ∗, Ri = ∗},

I = {i : Si = ∗, Ri 6= ∗}.
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1 A← ∅
2 i← `
3 while i > 0 do
4 if SD(S1S2 . . . Si, R1R2 . . . Ri) < 1− α then
5 A← A ∪ {i}
6 i← i− 1
7 else
8 find any index j with ∆(SjSj+1 . . . Si, RjRj+1 . . . Ri) ≥ 1− α
9 i← j − 1

10 end
11 end
12 return A

Algorithm 1: An algorithm to accompany the proof of Proposition 4.18.

Then for all 0 < α < 1,

|{i ∈ G : SD(S1S2 . . . Si, R1R2 . . . Ri) < 1− α}|

≥ |G| − α

1− α
|D| − 1

1− α
|I|.

The notation in Proposition 4.18 is mnemonic, with I,D, andG denoting the positions

of the inserted, deleted, and “good” (unchanged) symbols, respectively. Note that

insertions and deletions play asymmetric roles in this result, insertions being more

damaging than deletions.

Proof of Proposition 4.18 (adapted from [26, 25]). Abbreviate ` = |S| = |R| and

consider Algorithm 1, which iteratively constructs a subset

A ⊆ {i : SD(S1S2 . . . Si, R1R2 . . . Ri) < 1− α}. (4.3.25)

Since SD(S1S2 . . . Si, R1R2 . . . Ri) ≥ ∆(Si, Ri) ≥ 1 for every i ∈ I ∪D, we infer that
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A ⊆ G. In particular,

∆(SA, RA) =
|I ∩ A|+ |D ∩ A|
|G ∩ A|+ |D ∩ A|

=
|I|+ |D|

|G| − |A|+ |D|
. (4.3.26)

The complementary set A is the disjoint union of the intervals {j, j + 1, . . . , i} com-

puted by the else clause, each of which satisfies ∆(SjSj+1 . . . Si, RjRj+1 . . . Ri) ≥

1 − α. It follows by Proposition 4.12(ii) that ∆(SA, RA) ≥ 1 − α, which along

with (4.3.26) gives

|A| ≥ |G| − α

1− α
|D| − 1

1− α
|I|.

In view of (4.3.25) and A ⊆ G, the proof is complete. �

4.4. A coding scheme with a polynomial-size alphabet

We will now show how to faithfully simulate any protocol in the adversarial setting

at the expense of a large increase in alphabet size and a constant-factor increase in

communication cost. For an arbitrary constant ε > 0, we give an interactive coding

scheme that tolerates corruption rate 1
4
− ε as well as any normalized corruption rate

(εsubs, εoos) with εsubs + 3
4
εoos ≤ 1

4
− ε. In detail, the main result of this section is as

follows.

Theorem 4.19. Fix an arbitrary constant ε > 0, and let π be an arbitrary protocol

with alphabet Σ. Then there exists an interactive coding scheme for π with alphabet

size (|Σ| · |π|)O(1) and communication cost O(|π|) that tolerates

(i) corruption rate 1
4
− ε;

(ii) any normalized corruption rate (εsubs, εoos) with εsubs + 3
4
εoos ≤ 1

4
− ε.
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As we will see later in this chapter, Theorem 4.19 is optimal with respect to the

corruption rate and normalized corruption rate that it tolerates. We have organized

our proof of the theorem around nine milestones, corresponding to Sections 4.4.1–

4.4.9. Looking ahead, we will obtain the main result of this chapter by improving the

alphabet size to a constant.

4.4.1. The simulation. Recall that any protocol can be brought into canonical

form at the expense of doubling its communication cost. We may therefore assume

that π is in canonical form to start with. As a result, we may identify Alice’s input

with a set X of odd-depth edges of the protocol tree for π, and Bob’s input with a

set Y of even-depth edges. Execution of π corresponds to a walk down the unique

root-to-leaf path in X ∪ Y, whose length we denote by

n = |π|.

Analogous to previous work [26, 25], our interactive coding scheme involves Alice

and Bob sending edges from their respective input sets X and Y . At any given point,

Alice will send an edge e only if she has already sent every proper predecessor of e in

X, and likewise for Bob. This makes it possible for the sender to represent an edge e

succinctly as a pair (i, σ), where i is the index of a previous transmission by the sender

that featured the grandparent of e, and σ ∈ Σ × Σ uniquely identifies e relative to

that grandparent. When transmitting an edge e of depth 1 or 2, the sender sets i = 0

to indicate that there are no proper predecessors to refer to. Viewing each (i, σ) pair

as an alphabet symbol, the resulting alphabet Σin has size at most |Σ|2 multiplied

by the total number of transmissions. The following lemma shows that given any

sequence of edge representations, it is always possible to recover the corresponding

sequence of edges.
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Input: X (set of Alice’s edges)

1 encode and send the edge in X incident to the root

2 foreach i = 1, 2, 3, . . . , N do

3 receive a symbol ri ∈ Σout

4 s← DecodeC,α(r1r2 . . . ri)

5 interpret s as a sequence B of even-depth edges

6 `← maximum length of a rooted path in X ∪B

7 compute the shortest prefix of B s.t. X ∪B contains a rooted path of length `,
and let P be the rooted path so obtained

8 out← deepest vertex in P

9 if i ≤ N − 1 then
10 encode and send the deepest edge in P ∩X whose proper predecessors in X

have all been sent
11 end
12 end

Algorithm 2: Coding scheme for Alice

Lemma 4.20. Consider an arbitrary point in time, and let

(i1, σ1), (i2, σ2), . . . (it, σt) (4.4.1)

be the sequence of edge representations sent so far by one of the players. Then the

sequence uniquely identifies the corresponding edges e1, e2, . . . , et sent by that player.

Proof. The proof is by induction of t, the base case t = 0 being trivial. For the

inductive step, let e1, e2, . . . , et−1 be the unique sequence of edges corresponding to

(i1, σ1), (i2, σ2), . . . , (it−1, σt−1). Recall that it ∈ {0, 1, 2, . . . , t−1}. If it ∈ {1, 2, . . . , t−

1}, then by definition (it, σt) is the grandchild of eit that corresponds to σt ∈ Σ× Σ.

If it = 0, then by definition (it, σt) is the edge of depth 1 in Alice’s case, or depth 2

in Bob’s, that corresponds to σt. �
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Input: Y (set of Bob’s edges)

1 foreach i = 1, 2, 3, . . . , N do

2 receive a symbol ri ∈ Σout

3 s← DecodeC,α(r1r2 . . . ri)

4 interpret s as a sequence A of odd-depth edges

5 `← maximum length of a rooted path in Y ∪A

6 compute the shortest prefix of A s.t. Y ∪A contains a rooted path of length `,
and let P be the rooted path so obtained

7 out← deepest vertex in P

8 encode and send the deepest edge in P ∩ Y whose proper predecessors in Y
have all been sent

9 end

Algorithm 3: Coding scheme for Bob

A formal description of the interactive coding scheme is given by Algorithms 2 and 3

for Alice and Bob, respectively. In this description, α = α(ε) ∈ (0, 1) and N =

N(n, ε) are parameters to be set later, and C : Σ∗in → Σ∗out is an arbitrary α-good

code whose existence is ensured by Theorem 4.9. Alice and Bob use C to encode

every transmission. In particular, the encoded symbol from Σout at any given point

depends not only on the symbol from Σin being transmitted but also on the content

of previous transmissions by the sender. The decoding is done using the DecodeC,α

algorithm of Theorem 4.17. Apart from the initial send by Alice in line 1, the roles

of two players are symmetric. In particular, the pseudocode makes it clear that Alice

and Bob send at most N transmissions each. We conclude that |Σin| ≤ |Σ|2 · 2N and

therefore by Theorem 4.9,

|Σout| = (|Σ| ·N)O(1/α). (4.4.2)

We pause to elaborate on the decoding and interpretation steps in lines 4–5 for Al-

ice and lines 3–4 for Bob. The decoding step produces a codeword s of C, which
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by Fact 4.8 corresponds to a unique string in Σ∗in. Recall that this string is of the

form (4.4.1) for some integers i1, i2, . . . , it and some σ1, σ2, . . . , σt ∈ Σ × Σ. The re-

ceiving party uses the inductive procedure of Lemma 4.20 to convert (4.4.1) to a

sequence of edges. It may happen that (4.4.1) is syntactically malformed; in that

case, the receiving party interrupts the interpretation process at the longest prefix

of (4.4.1) that corresponds to a legitimate sequence of edges. This completes the

interpretation step, yielding a sequence of edges A for Bob and B for Alice.

In Sections 4.4.2–4.4.9 below, we examine an arbitrary but fixed execution of the

interactive coding scheme. In particular, we will henceforth consider the inputs X

and Y and the adversary’s actions to be fixed. We allow any behavior by the adversary

as long as it meets one of the criteria (i), (ii) in Theorem 4.19. We will show that as

soon as the communication stops, the variable out is set for both Alice and Bob to the

leaf vertex of the unique root-to-leaf path in X ∪ Y . This will prove Theorem 4.19.

4.4.2. Events. A central notion in our analysis is that of an event. There are

three types of events: deletions, insertions, and good events. A successful transmission

corresponds to a single event, which we call a good event. A transmission that is

subject to an attack, on the other hand, corresponds to two events, namely, a deletion

event followed immediately by an insertion event. Each event has an addressee. The

addressee of a good event is defined to be the receiver of the transmission. Similarly,

the deletion and insertion events that arise from a substitution attack are said to be

addressed to the receiver of the transmission. In an out-of-sync attack, on the other

hand, the deletion event is addressed to the intended receiver of the transmission,

whereas the insertion event is addressed to the sender.

To illustrate these definitions, consider the hypothetical execution in Table 1. The

columns of the table are numbered 1 through 10, corresponding the ten transmissions
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Transmission # 1 2 3 4 5 6 7 8 9 10
Addressee B A A B A B A B A B A B A
Symbol sent 0 1 ∗ 0 1 0 0 ∗ 1 0 ∗ 0 1
Symbol received 0 ∗ 0 0 1 0 ∗ 0 1 ∗ 1 0 1

Table 1. A hypothetical execution.

sent in this execution. These ten columns are further split into subcolumns that

correspond to individual events, as follows.

(i) Transmissions 1, 3, 4, 5, 7, 9, 10 result in successful deliveries, each contribut-

ing a good event addressed to the receiver of the transmission. For each of

these transmissions, the entries in the sent and received rows coincide and

show the symbol delivered from the sender to the receiver.

(ii) Transmission 2 is subject to a substitution attack, whereby the sent sym-

bol “1” is deleted (corresponding to the “1” and ∗ entries in the sent and

received rows, respectively) and a symbol of “0” is inserted in its place (corre-

sponding to the ∗ and “0” entries in the sent and received rows, respectively).

Transmission 2 thus contributes a deletion event and an insertion event, both

addressed to the receiver of the transmission.

(iii) Transmissions 6 and 8 are subject to out-of-sync attacks, each contributing

a deletion event and an insertion event. In both cases, the deletion event is

addressed to the transmission’s intended receiver, whereas the insertion event

is addressed to the transmission’s sender. In the case of transmission 6, the

sent symbol “0” is deleted (corresponding to the “0” and ∗ entries in the sent

and received rows, respectively) and a new symbol of “0” is spuriously sent

back on behalf of the transmission’s intended receiver (corresponding to the

∗ and “0” entries in the sent and received rows, respectively).

Execution of the interactive coding scheme gives rise to a string alignment S ′ || R′ for

Alice and a string alignment S ′′ || R′′ for Bob. Each position i in the strings S ′ and R′
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corresponds in a one-to-one manner to an event addressed to Alice, which is either a

good event (S ′i = R′i), a deletion (S ′i 6= ∗, R′i = ∗), or an insertion (S ′i = ∗, R′i 6= ∗). An

analogous description applies to Bob’s strings S ′′ and R′′. To illustrate, the execution

in Table 1 corresponds to

S ′ = 1∗101∗1,

R′ = ∗01∗111

and

S ′′ = 000∗00,

R′′ = 0000∗0.

For integers i ≤ j, we let S ′[i, j] || R′[i, j] denote the subalignment of S ′ || R′ that

corresponds to transmissions i, i+ 1, . . . , j. Analogously, S ′′[i, j] || R′′[i, j] denotes the

subalignment of S ′′ || R′′ that corresponds to transmissions i, i + 1, . . . , j. We alert

the reader that in our notation, S ′i and S ′[i, i] have completely different meanings:

the former is the ith symbol of S ′, whereas the latter is the substring of S ′ that

corresponds to the ith transmission. We define

G′ = {i : S ′[i, i] = R′[i, i] 6= ε},

D′ = {i : R′[i, i] = ∗},

I ′ = {i : S ′[i, i] = ∗}.

In words, G′, D′, I ′ are the sets of transmissions that contribute a good event, a

deletion event, and an insertion event, respectively, addressed in each case to Alice.
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We define analogous sets for Bob:

G′′ = {i : S ′′[i, i] = R′′[i, i] 6= ε},

D′′ = {i : R′′[i, i] = ∗},

I ′′ = {i : S ′′[i, i] = ∗}.

We abbreviate

G = G′ ∪G′′,

D = D′ ∪D′′,

I = I ′ ∪ I ′′.

We let T denote the combined number of transmissions sent by Alice and Bob. Since

neither player can send more than N transmissions, we have

T ≤ 2N. (4.4.3)

The following lemma collects basic properties of the sets just introduced.

Lemma 4.21. The following properties hold:

(i) G′ and G′′ form a partition of G;

(ii) I ′ and I ′′ form a partition of I;

(iii) D′ and D′′ form a partition of D;

(iv) I = D;

(v) I ′ \D′ = D′′ \ I ′′;

(vi) I ′′ \D′′ = D′ \ I ′;

(vii) G and I form a partition of {1, 2, . . . , T};

(viii) G and D form a partition of {1, 2, . . . , T}.
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Proof. Properties (i)–(iii) hold because any given transmission contributes at most

one good event, at most one deletion event, and at most one insertion event, where

each event is addressed to precisely one of the players. Property (iv) holds because

deletions and insertions always occur in pairs, with any given transmission generating

both or neither. Property (v) follows set-theoretically from the preceding properties:

I ′ \D′ = (I \ I ′′) \ (D \D′′) by (ii) and (iii)

= (D \ I ′′) \ (D \D′′) by (iv)

= D ∩ I ′′ ∩D ∩D′′ by Boolean algebra

= D ∩ I ′′ ∩ (D ∪D′′) by Boolean algebra

= D ∩ I ′′ ∩D′′ by Boolean algebra

= I ′′ ∩D′′ by (iii)

= D′′ \ I ′′ by Boolean algebra.

The proof of (vi) is entirely analogous. Properties (vii) and (viii) can be restated by

saying that the transmissions can be partitioned into those that result in successful

deliveries and those that are subject to an attack. �

4.4.3. Excellent transmissions. A straightforward consequence of Lemma 4.20

is that the codewords 6 ∗(S ′[1, t]) and 6 ∗(S ′′[1, t]) completely reveal the sequences of

edges sent by Bob and by Alice, respectively, over the course of the first t transmis-

sions. We formalize this observation below.

Lemma 4.22. Let t ∈ {1, 2, . . . , T} be given. Then:

(i) the string 6 ∗(S ′[1, t]) uniquely identifies the sequence of protocol tree edges that

Bob sends Alice over the course of transmissions 1, 2, . . . , t;
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(ii) the string 6 ∗(S ′′[1, t]) uniquely identifies the sequence of protocol tree edges

that Alice sends Bob over the course of transmissions 1, 2, . . . , t.

Proof. By symmetry, it suffices to prove the former claim. By Fact 4.8, the codeword

6 ∗(S ′[1, t]) ∈ Σ∗out corresponds to a unique string in Σ∗in, which is the sequence of

edge representations that Bob sent Alice over the course of the first t transmissions.

By Lemma 4.20, this sequence of edge representations uniquely identifies the edges

themselves. �

Of course, due to interference by the adversary, the receiving party rarely if ever

has access to the exact codeword sent by his or her counterpart. This motivates us

to identify sufficient conditions that allow for complete and correct decoding by the

receiving party. Define

E ′ = {i ∈ G′ : SD(S ′[1, i], R′[1, i]) < 1− α},

E ′′ = {i ∈ G′′ : SD(S ′′[1, i], R′′[1, i]) < 1− α}.

We refer to E ′ and E ′′ as the sets of excellent transmissions for Alice and Bob,

respectively. This term is borne out by the following lemma.

Lemma 4.23. Let t ∈ {1, 2, . . . , T} be given.

(i) If t ∈ E ′, then on receipt of transmission t, Alice is able to correctly recover

the complete sequence of edges that Bob has sent her by that time.

(ii) If t ∈ E ′′, then on receipt of transmission t, Bob is able to correctly recover

the complete sequence of edges that Alice has sent him by that time.

Proof. By symmetry, it again suffices to prove the former claim. Let t ∈ E ′. Then by

definition, SD(S ′[1, t], R′[1, t]) < 1− α. Taking k =∞ in Theorem 4.17, we conclude

that DecodeC,α(6 ∗(R′[1, t])) = 6 ∗(S ′[1, t]). This means that on receipt of transmission
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t, Alice is able to correctly recover the entire codeword 6 ∗(S ′[1, t]) that Bob has sent

her so far. By Lemma 4.22, this in turn makes it possible for Alice to correctly identify

the corresponding sequence of edges. �

4.4.4. Bad transmissions. Recall that each symbol received by Alice from the

communication channel corresponds in a one-to-one manner to a good event or an

insertion. Put another way, each such symbol originates in a one-to-one manner from

a transmission in G′ ∪ I ′. As we saw in Section 4.4.3, the symbols that correspond to

excellent transmissions E ′ ⊆ G′ ∪ I ′ allow Alice to correctly recover the sequence of

edges that Bob has sent her so far. In all other cases, the conversion of the received

string to an edge sequence can produce unpredictable results and cannot be trusted.

This motivates us to define the sets of bad transmissions for Alice and Bob by

B′ = (G′ ∪ I ′) \ E ′,

B′′ = (G′′ ∪ I ′′) \ E ′′,

respectively. We abbreviate

B = B′ ∪B′′.

Lemma 4.24. The sets B′ and B′′ form a partition of B.

Proof:

B′ ∩B′′ ⊆ (G′ ∪ I ′) ∩ (G′′ ∪ I ′′)

= (G′ ∩G′′) ∪ (I ′ ∩ I ′′) ∪ (G′ ∩ I ′′) ∪ (G′′ ∩ I ′)

⊆ (G′ ∩G′′) ∪ (I ′ ∩ I ′′) ∪ (G ∩ I)

= ∅,

95



where the last step follows from Lemma 4.21 (i), (ii), (vii). �

As one might expect, the number of bad transmissions is closely related to the number

of attacks by the adversary. This relation is formalized by the following lemma.

Lemma 4.25. For any interval J with 1 ∈ J,

|B|J ≤
2

1− α
|D|J .

The reader will recall that |B|J = |B ∩ J | and |D|J = |D ∩ J | in the lemma above.

We use this relative cardinality notation extensively in the rest of the chapter for

improved readability and ease of typesetting.

Proof of Lemma 4.25. Since B and D are sets of positive integers, it suffices to con-

sider an integer interval J = {1, 2, . . . , t}. Applying Proposition 4.18 to the alignment

S ′[1, t] || R′[1, t] shows that

|E ′ ∩ {1, 2, . . . , t}| ≥ |G′ ∩ {1, 2, . . . , t}|

− α

1− α
|D′ ∩ {1, 2, . . . , t}| − 1

1− α
|I ′ ∩ {1, 2, . . . , t}|,

which can be succinctly written as

|E ′|J ≥ |G′|J −
α

1− α
|D′|J −

1

1− α
|I ′|J . (4.4.4)
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Now

|B′|J = |(G′ ∪ I ′) \ E ′|J

= |G′ ∪ I ′|J − |E ′|J

= |G′|J + |I ′|J − |E ′|J

≤ α

1− α
|D′|J +

2− α
1− α

|I ′|J , (4.4.5)

where the first step holds by definition, the second uses the containment E ′ ⊆ G′, the

third is valid by Lemma 4.21 (vii), and the fourth follows from (4.4.4). A symmetric

argument gives

|B′′|J ≤
α

1− α
|D′′|J +

2− α
1− α

|I ′′|J . (4.4.6)

As a result,

|B|J ≤
α

1− α
(|D′|J + |D′′|J) +

2− α
1− α

(|I ′|J + |I ′′|J)

=
α

1− α
|D|J +

2− α
1− α

|I|J

=
2

1− α
|D|J ,

where the first step follows from (4.4.5) and (4.4.6), the second uses

Lemma 4.21 (ii), (iii), and the third uses Lemma 4.21 (iv). �

4.4.5. Virtual length. Key to our approach is a virtual view of communication

that centers around events rather than actual transmissions. In particular, we focus

on alternations in event addressee as opposed to alternations in sender. To start with,

we define for an arbitrary set Z ⊆ R its virtual length by

‖̃Z‖̃ = |G′ ∪ I ′ ∪D′|Z + |G′′ ∪ I ′′ ∪D′′|Z . (4.4.7)
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In other words, the virtual length ‖̃Z‖̃ is the number of transmissions in Z that have

an event addressed to Alice, plus the number of transmissions in Z that have an event

addressed to Bob. It follows immediately that

|Z| ≤ ‖̃Z‖̃ ≤ 2|Z|

for any Z ⊆ {1, 2, . . . , T}, and a moment’s thought reveals that the lower and upper

bounds can both be attained. We are of course interested only in subsets Z ⊆

{1, 2, . . . , T}, but defining virtual length as we did above for arbitrary Z ⊆ R greatly

simplifies the notation. We now show that in the special case when Z is an interval,

the two summands in (4.4.7) differ by at most 1.

Lemma 4.26. For any interval J,

‖̃J ‖̃ ≤ 2|G′ ∪ I ′ ∪D′|J + 1, (4.4.8)

‖̃J ‖̃ ≤ 2|G′′ ∪ I ′′ ∪D′′|J + 1 (4.4.9)

and

‖̃J ‖̃ ≥ 2|G′ ∪ I ′ ∪D′|J − 1, (4.4.10)

‖̃J ‖̃ ≥ 2|G′′ ∪ I ′′ ∪D′′|J − 1. (4.4.11)

Proof. Consider arbitrary integers i1 < i2 such that

i1 ∈ (G′′ ∪D′′ ∪ I ′′) \ (G′ ∪D′ ∪ I ′),

i2 ∈ (G′′ ∪D′′ ∪ I ′′) \ (G′ ∪D′ ∪ I ′).

The first equation states that transmission i1 is sent by Alice and is not subject to an

out-of-sync attack. Recall that a transmission causes a change of speaker if and only

if it is not subject to an out-of-sync attack. As a result, a change of speaker from
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Alice to Bob happens immediately after transmission i1. Since the later transmission

i2 is again sent by Alice, there must be an intermediate transmission j that causes a

change of speaker from Bob to Alice. This implies

j ∈ (G′ ∪D′ ∪ I ′) \ (G′′ ∪D′′ ∪ I ′′).

The previous paragraph shows that the interval between any two distinct integers in

(G′′∪D′′∪I ′′)\(G′∪D′∪I ′) contains at least one integer in (G′∪D′∪I ′)\(G′′∪D′′∪I ′′).

We conclude that for any interval J,

|G′′ ∪D′′ ∪ I ′′|J ≤ |G′ ∪D′ ∪ I ′|J + 1.

Adding |G′ ∪D′ ∪ I ′|J to both sides of this inequality yields (4.4.8), whereas adding

|G′′ ∪ D′′ ∪ I ′′|J to both sides yields (4.4.11). A symmetric argument settles the

remaining inequalities (4.4.9) and (4.4.10). �

We now show that the combined virtual length of all transmissions is at least 2N. This

contrasts with the number of transmissions themselves, which can be significantly less

than 2N due to out-of-sync attacks.

Lemma 4.27. The total virtual length of all transmissions satisfies

‖̃[1, T ]‖̃ ≥ 2N.

Proof. For the communication to stop, one of the players needs to terminate. This

happens only when that player has sent N symbols and received as many. Formu-

laically, this translates to

|G′′ ∪D′′| ≥ N,

|G′ ∪ I ′| ≥ N
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if Alice terminates first, and

|G′ ∪D′| ≥ N,

|G′′ ∪ I ′′| ≥ N

if Bob terminates first. Either way,

‖̃[1, T ]‖̃ = |G′ ∪D′ ∪ I ′|+ |G′′ ∪D′′ ∪ I ′′|

≥ 2N. �

Next, we relate the virtual length of any interval to the number of attacks experienced

by Alice and Bob during that time.

Lemma 4.28. Let i, j be given integers with i ≤ j. Then

‖̃[i, j]‖̃ ≤
4|D|[i,j]

δ
+ 1 (4.4.12)

for any 0 < δ ≤ 1 such that

max{∆(S ′[i, j], R′[i, j]), ∆(S ′′[i, j], R′′[i, j])} ≥ δ. (4.4.13)

Proof. By hypothesis, ∆(S ′[i, j], R′[i, j]) ≥ δ or ∆(S ′′[i, j], R′′[i, j]) ≥ δ. Without loss

of generality, assume the former. Abbreviating J = [i, j], we have

|D′|J + |I ′|J
|D′|J + |G′|J

≥ δ,

which along with δ > 0 gives

|D′|J + |G′|J ≤
|D′|J + |I ′|J

δ
. (4.4.14)
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Now

‖̃J ‖̃ − 1

2
≤ |G′ ∪D′ ∪ I ′|J

= |G′|J + |D′ ∪ I ′|J

= |G′|J + |D′|J + |I ′ \D′|J

≤ |D
′|J + |I ′|J
δ

+ |I ′ \D′|J

≤ |D
′|J + |I ′|J + |I ′ \D′|J

δ

=
|I ′|J + |I ′ ∪D′|J

δ

≤ |I|J + |I ∪D|J
δ

=
2|D|J
δ

,

first step follows from Lemma 4.26, the second uses Lemma 4.21 (vii), (viii), the

fourth is valid by (4.4.14), the fifth uses 0 < δ ≤ 1, and the last step is immediate

from Lemma 4.21 (iv). �

Finally, we derive a useful bound on the virtual length of an interval in terms of the

number of excellent and bad transmissions in it.

Lemma 4.29. For any interval J,

‖̃J ‖̃ ≤ 2(|B|J + |E ′|J) + 1, (4.4.15)

‖̃J ‖̃ ≤ 2(|B|J + |E ′′|J) + 1. (4.4.16)
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Proof. By symmetry, it suffices to prove (4.4.15). We have

D′ \ I ′ = I ′′ \D′′

⊆ I ′′

⊆ I ′′ ∪ (G′′ \ E ′′)

= (I ′′ ∪G′′) \ E ′′

= B′′, (4.4.17)

where the first and fourth steps use parts (vi) and (vii), respectively, of Lemma 4.21.

Now (4.4.15) can be verified as follows:

‖̃J ‖̃ − 1

2
≤ |G′ ∪ I ′ ∪D′|J

= |G′ ∪ I ′|J + |D′ \ (G′ ∪ I ′)|J

= |G′ ∪ I ′|J + |D′ \ I ′|J

= |E ′|J + |(G′ ∪ I ′) \ E ′|J + |D′ \ I ′|J

= |E ′|J + |B′|J + |D′ \ I ′|J

≤ |E ′|J + |B′|J + |B′′|J

= |E ′|J + |B|J ,

where the first step is valid by Lemma 4.4.8, the third step uses Lemma 4.21 (viii),

the fourth step follows from the containment E ′ ⊆ G′, the fifth step applies the

definition of B′, the sixth step is immediate from (4.4.17), and the final step is justified

by Lemma 4.24. �
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4.4.6. Virtual corruption rate. In keeping with our focus on events rather

than transmissions, we define

corr J =
|D ∩ J |
‖̃J ‖̃

for any interval J. We refer to this quantity as the virtual corruption rate of J. The

next lemma shows that over the course of the execution, the virtual corruption rate

is relatively low.

Lemma 4.30. Assumptions (i) and (ii) in Theorem 4.19 imply

corr[1, T ] ≤ 1

4
− ε (4.4.18)

and

corr[1, T ] ≤ 1

4
− ε

2
, (4.4.19)

respectively.

Proof. Assumption (i) states that the total number of attacks does not exceed a
1
4
− ε fraction of the worst-case communication cost of the interactive coding scheme.

Formulaically,

|D| ≤
(

1

4
− ε
)
· 2N.

As a result,

corr[1, T ] =
|D|
‖̃[1, T ]‖̃

≤ 1

4
− ε,

where the second step uses Lemma 4.27.
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Assumption (ii) states that

Tsubs +
3

4
Toos ≤

(
1

4
− ε
)
T,

where Tsubs and Toos denote the total number of substitution attacks and the to-

tal number of out-of-sync attacks, respectively. Straightforward manipulations now

reveal that

Tsubs + Toos
T + Toos

≤ 1

4
− ε

2
.

By definition,

|D| = Tsubs + Toos.

On the other hand, the defining equation (4.4.7) of virtual length reveals that ‖̃Z‖̃

for any set Z is the total number of transmissions in Z plus the total number of

out-of-sync attacks in Z. In particular,

‖̃[1, T ]‖̃ = T + Toos.

The last three equations immediately give (4.4.19). �

4.4.7. Finish times. Let e1, e2, . . . , en be the edges of the unique root-to-leaf

path in X ∪ Y, listed in increasing order of depth. For i = 1, 2, . . . , n, define fi to be

the index of the first transmission when ei is sent (whether or not that transmission

is subject to an attack). If ei is never sent, we define fi = ∞. For notational

convenience, we also define f0 = f−1 = f−2 = · · · = 0. Recall from the description

of the interactive coding scheme that Alice never sends an edge e unless she has
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previously sent all proper predecessors of e in X, and analogously for Bob. This gives

f1 ≤ f3 ≤ f5 ≤ · · · ,

f2 ≤ f4 ≤ f6 ≤ · · · .

The overall sequence f1, f2, f3, f4, f5, f6, . . . need not be in sorted order, however, due

to interference by the adversary. We abbreviate

fi = max{0, f1, f2, . . . , fi}.

By basic arithmetic,

[fi−1, fi) = [fi−1, fi), i = 1, 2, . . . , n. (4.4.20)

We now bound the virtual length of any such interval in terms of the number of bad

transmissions in it, thereby showing that Alice and Bob make rapid progress as long

as they do not experience too many attacks.

Lemma 4.31. For any integers i and t with fi−1 ≤ t < fi,

‖̃[fi−1, t]‖̃ ≤ 2|B|[fi−1,t]
+ 3. (4.4.21)

Proof. We will only treat the case of i odd; the proof for even i can be obtained by

swapping the roles of Alice and Bob below.

Consider any transmission j ∈ E ′ ∩ [fi−1, fi). Lemma 4.23 ensures that on receipt of

transmission j, Alice is able to correctly recover the set of edges that Bob has sent

her by that time, which includes e2, e4, e6, . . . , ei−1. At that same time, Alice has sent

Bob e1, e3, e5, . . . , ei−2 but not ei, as one can verify from j ∈ [fi−1, fi). Therefore,

the arrival of transmission j causes Alice either to exit or to immediately send ei.

Either way, the interval [fi−1, fi) does not contain any transmissions numbered j + 1

or higher. We conclude that there is at most one transmission in E ′ ∩ [fi−1, fi), and
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in particular

|E ′|[fi−1,t]
≤ 1.

This upper bound directly implies (4.4.21) in light of Lemma 4.29. �

4.4.8. The progress lemma. We have reached the technical centerpiece of our

analysis. The result that we are about to prove shows that any sufficiently long

execution of the interactive coding scheme with a sufficiently low virtual corruption

rate allows Alice and Bob to exchange all the n edges of the unique root-to-leaf path

in X ∪ Y, and moreover this progress is not “undone” by any subsequent attacks by

the adversary. The proof uses amortized analysis in an essential way.

Lemma 4.32 (Progress lemma). Let t ∈ {1, 2, . . . , T} be given with

‖̃[1, t]‖̃ ≥ n+ 2

α
, (4.4.22)

corr[1, t] ≤ 1

4
− α. (4.4.23)

Then there is an integer t∗ ≤ t such that

[fn, t
∗) ∩ E ′ 6= ∅, (4.4.24)

[fn, t
∗) ∩ E ′′ 6= ∅, (4.4.25)

∆(S ′[i, t], R′[i, t]) < 1− α, i = 1, 2, . . . , t∗, (4.4.26)

∆(S ′′[i, t], R′′[i, t]) < 1− α, i = 1, 2, . . . , t∗. (4.4.27)

Proof. Equations (4.4.26) and (4.4.27) hold vacuously for t∗ = 0. In what follows, we

will take t∗ ∈ {0, 1, 2, . . . , t} to be the largest integer for which (4.4.26) and (4.4.27)
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hold. For the sake of contradiction, assume that at least one of the remaining desider-

ata (4.4.24), (4.4.25) is violated, whence

‖̃[fn, t∗)‖̃ ≤ 2|B|[fn,t∗) + 1 (4.4.28)

by Lemma 4.29. The proof strategy is to show that (4.4.28) is inconsistent with the

hypothesis of the lemma. To this end, let n∗ ∈ {0, 1, 2, . . . , n} be the largest integer

such that fn∗ ≤ t∗. Then we have the partition

[0, t] = [f0, f1) ∪ [f1, f2) ∪ · · · ∪ [fn∗−1, fn∗) ∪ [fn∗ , t
∗) ∪ {t∗} ∪ (t∗, t].

The bulk of our proof is concerned with bounding the virtual length of each of the

intervals on the right-hand side.

To begin with,

‖̃[fi−1, fi)‖̃ = ‖̃[fi−1, fi)‖̃

≤ 2|B|[fi−1,fi)
+ 3

≤ 2|B|[fi−1,fi)
+ 3 (4.4.29)

for any i = 1, 2, . . . , n∗, where the first and third steps use (4.4.20), and the second

step follows from Lemma 4.31. Next, the upper bound

‖̃[fn∗ , t∗)‖̃ ≤ 2|B|[fn∗ ,t∗) + 3 (4.4.30)

follows from Lemma 4.31 if n∗ < n and from (4.4.28) if n∗ = n. The virtual length of

the singleton interval {t∗} can be bounded from first principles:

‖̃{t∗}‖̃ ≤ 2. (4.4.31)
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Finally, recall from the definition of t∗ that either max{∆(S ′[t∗ + 1, t], R′[t∗ + 1, t]),

∆(S ′′[t∗ + 1, t], R′′[t∗ + 1, t])} ≥ 1− α or t∗ = t, leading to

‖̃(t∗, t]‖̃ ≤ 4

1− α
|D|(t∗,t] + 1 (4.4.32)

by Lemma 4.28 in the former case and trivially in the latter.

Putting everything together, we obtain

‖̃[1, t]‖̃ ≤ 2|B|[0,t∗) + 3(n∗ + 1) + 2 +
4

1− α
|D|(t∗,t] + 1

≤ 4

1− α
|D|[0,t∗) + 3(n∗ + 1) + 2 +

4

1− α
|D|(t∗,t] + 1

≤ 4

1− α
|D|[0,t] + 3n+ 6

≤ 4

1− α
|D|[0,t] + 3α‖̃[1, t]‖̃, (4.4.33)

where the first step is the result of adding (4.4.29)–(4.4.32), the second step applies

Lemma 4.25, and the final step uses (4.4.22). Since 0 < α < 1, the conclusion

of (4.4.33) is equivalent to

corr[1, t] ≥ (1− 3α)(1− α)

4
,

which is inconsistent with (4.4.23). We have obtained the desired contradiction and

thereby proved that t∗ satisfies each of the properties (4.4.24)–(4.4.27). �

4.4.9. Finishing the proof. We have reached a “master theorem,” which gives a

sufficient condition for Alice and Bob to assign the correct value to their corresponding

copies of the out variable. Once established, this result will allow us to easily finish

the proof of Theorem 4.19.

Theorem 4.33. Consider a point in time when Alice updates her out variable, and

fix a corresponding integer t ≤ T such that 6 ∗(R′[1, t]) is the complete sequence of
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symbols that Alice has received by that time. Assume that

‖̃[1, t]‖̃ ≥ n+ 2

α
, (4.4.34)

corr[1, t] ≤ 1

4
− α. (4.4.35)

Then as a result of the update, out is assigned the leaf vertex in the unique root-to-leaf

path in X ∪ Y. An analogous theorem holds for Bob.

Observe that Theorem 4.33 makes no assumption as to the actual timing of the update

to out. It may happen that the update takes place in response to the tth transmission;

but it may also take place significantly earlier, due to out-of-sync attacks.

Proof of Theorem 4.33. We will only prove the claim for Alice; the proof of Bob is

entirely analogous. Lemma 4.32 implies the existence of j′ ∈ E ′ and j′′ ∈ E ′′ such

that

fn ≤ j′ < t, (4.4.36)

fn ≤ j′′ < t, (4.4.37)

∆(S ′[j′ + 1, t], R′[j′ + 1, t]) < 1− α, (4.4.38)

∆(S ′′[j′′ + 1, t], R′′[j′′ + 1, t]) < 1− α. (4.4.39)

By the definition of E ′ and E ′′,

SD(S ′[1, j′], R′[1, j′]) < 1− α, (4.4.40)

SD(S ′′[1, j′′], R′′[1, j′′]) < 1− α. (4.4.41)
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As a result,

SD∗(S′[1,j′])(S
′[1, t], R′[1, t])

= SD∗(S′[1,j′])(S
′[1, j′]S ′[j′ + 1, t], R′[1, j′]R′[j′ + 1, t])

≤ max{SD∗(S′[1,j′])(S
′[1, j′], R′[1, j′]), ∆(S ′[j′ + 1, t], R′[j′ + 1, t])}

≤ max{SD(S ′[1, j′], R′[1, j′]), ∆(S ′[j′ + 1, t], R′[j′ + 1, t])}

< 1− α, (4.4.42)

where the second step is valid by Proposition 4.12 (iv), the third step uses (4.2.5),

and the final step is immediate from (4.4.38) and (4.4.40).

When Alice updates her out variable, the sequence of symbols that she has received

is 6 ∗(R′[1, t]). By (4.4.42) and Theorem 4.17,

DecodeC,α(6 ∗(R′[1, t])) � (6 ∗(S ′[1, t]))≤∗(S′[1,j′])

= 6 ∗(S ′[1, j′]).

Therefore, just prior to updating out, Alice is able to correctly recover the prefix

6 ∗(S ′[1, j′]) of the sequence of symbols sent to her by Bob. By Lemma 4.22, this

means that she correctly recovers the complete set of edges encoded by the string

6 ∗(S ′[1, j′]). By (4.4.36), this prefix 6 ∗(S ′[1, j′]) contains the encoding of every edge of

Y that appears in the root-to-leaf path in X ∪ Y . Moreover, every edge encoded in

6 ∗(S ′[1, j′]) is correct in that it is an element of Y . Alice’s pseudocode now ensures

that she assigns to out the leaf vertex on the unique root-to-leaf path in X ∪ Y.

The proof for Bob is entirely analogous, with (4.4.37), (4.4.39), (4.4.41), and j′′

playing the role of (4.4.36), (4.4.38), (4.4.40), and j′, respectively. �

We are now in a position to establish the main result of this section.
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Proof of Theorem 4.19. Recall that n = |π| denotes the communication cost of the

original protocol, and ε > 0 is a constant in the statement of Theorem 4.19. Consider

the interactive coding scheme given by Algorithms 2 and 3, with parameters set

according to

α =
ε

4
, (4.4.43)

N =

⌈
n+ 4

2α

⌉
. (4.4.44)

By (4.4.2), the coding scheme uses an alphabet of size at most (|Σ| · n/ε)O(1/ε) =

O(|Σ| · n)O(1) = O(|Σ| · |π|)O(1). Furthermore, by (4.4.3), the combined number of

transmissions sent by Alice and Bob does not exceed 2N = O(n) = O(|π|).

It remains to show that when the communication stops, out is set for both Alice and

Bob to the leaf vertex on the unique root-to-leaf path in X ∪ Y. To this end, note

from (4.4.43) and Lemma 4.30 that

corr[1, T ] ≤ 1

4
− 2α. (4.4.45)

By (4.4.44) and Lemma 4.27,

‖̃[1, T ]‖̃ > n+ 4

α
(4.4.46)

and therefore

‖̃[1, T − 1]‖̃ > n+ 2

α
. (4.4.47)
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Also,

corr[1, T − 1] ≤ ‖̃[1, T ]‖̃
‖̃[1, T − 1]‖̃

· corr[1, T ]

≤

(
1 +

2

‖̃[1, T − 1]‖̃

)
· corr[1, T ]

≤
(

1 +
2α

n+ 2

)
·
(

1

4
− 2α

)
≤ 1

4
− α, (4.4.48)

where the third step uses (4.4.45) and (4.4.47). Now, consider the last time that Alice

and Bob update their copies of out. The complete sequence of symbols that Alice has

received at the time of her last update is 6 ∗(R′[1, T − 1]) or 6 ∗(R′[1, T ]). Likewise, the

complete sequence of symbols that Bob has received at the time of his last update is

6 ∗(R′′[1, T − 1]) or 6 ∗(R′′[1, T ]). By (4.4.45)–(4.4.48) and Theorem 4.33, both players

set out to the leaf vertex in the unique root-to-leaf path in X ∪Y. This completes the

proof of Theorem 4.19. �

4.5. A coding scheme with a constant-size alphabet

In this section, we will adapt the proof of Theorem 4.19 to use an alphabet of constant

size. This modification will yield the main result of this chapter (Theorems 4.1

and 4.2), which we restate here for the reader’s convenience.

Theorem 4.34. Fix an arbitrary constant ε > 0, and let π be an arbitrary protocol

with alphabet Σ. Then there exists an interactive coding scheme for π with alphabet

size O(1) and communication cost O(|π| log |Σ|) that tolerates

(i) corruption rate 1
4
− ε;

(ii) any normalized corruption rate (εsubs, εoos) with εsubs + 3
4
εoos ≤ 1

4
− ε.
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In Section 4.5.8, we further generalize Theorem 4.34(i) to the setting when Alice and

Bob need to be ready with their answers by a certain round (based on each player’s

own counting) rather than when the communication stops. In that setting, too, our

interactive coding scheme is optimal and matches the lower bound due to Braverman

et al. [25]. At a high level, our proofs of Theorem 4.34 and its generalization are

similar to the proof of Theorem 4.19 in the previous section, and we will be able

to reuse most of the auxiliary machinery developed there. The principal point of

departure is a new way of encoding and transferring edges, which in turn requires

subtle modifications to the amortized analysis.

4.5.1. Edge representation and transfer. We may assume without loss of

generality that π is in canonical form, which can be achieved for any protocol at the

expense of doubling its communication cost. Canonical form allows us to identify

Alice’s input with a set X of odd-depth edges of the protocol tree for π, and Bob’s

input with a set Y of even-depth edges. Execution of π corresponds to following the

unique root-to-leaf path in X ∪ Y, whose length we denote by

n = |π|.

Recall that our previous interactive coding scheme in Section 4.4 involved Alice and

Bob sending each other edges from their respective input sets X and Y , with each

transmission representing precisely one such edge. The new coding scheme also

amounts to Alice and Bob exchanging edges from their respective input sets. This

time, however, any given transmission will contain information about as many as Λ2

edges, where Λ = Λ(ε) > 0 is a constant to be chosen later. Moreover, to accommo-

date the size restriction on the alphabet, the encoding of any given edge will now be

split across multiple transmissions. We say that a transmission fulfills an edge e if it

carries the last bit of e’s encoding.
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Our approach to the encoding and transfer of edges is inspired by the interactive

coding schemes with constant-size alphabets due to Braverman and Rao [26] and

Braverman et al. [25]. We adapt their encoding and transfer in several ways to

support our more general setting and to make the overall proof simpler. A detailed

technical exposition follows.

Edge encoding. We will keep the policy that Alice does not start sending an edge

e unless she has already fulfilled all predecessors of e in X, and likewise for Bob. This

makes it possible for the sender to encode an edge e by referring to the previously

transmitted grandparent of e. Specifically, an edge is now encoded as a triple (m, j, σ),

where m is the number of transmissions sent by the sender since his or her most

recent transmission that fulfilled the grandparent of e; the index j ∈ {1, 2, 3, . . . ,Λ2}

identifies that grandparent among the up to Λ2 edges featured in that transmission;

and σ ∈ Σ × Σ identifies e relative to that grandparent. As a base case, an edge of

depth 1 or 2 is encoded by a triple (m, j, σ) where m is the number of transmissions

sent by the sender since the beginning of time, and j is ignored. Note that how an edge

is encoded is highly context-sensitive in that it depends on previous transmissions by

the sender. As a result, whenever we speak of the encoding of an edge e, we are

referring to the encoding of e at a particular time that will be clear from the context.

Chunking. A constant-size alphabet makes it in general impossible to deliver the

entire encoding of an edge in a single transmission. Instead, we split the encoding of

every edge into chunks. A chunk contains a single bit of the encoding of the edge as

well as 3 bits of metadata. Thus, the number of chunks needed to transfer an edge is

equal to the bit length of e’s encoding. Alice and Bob each maintain data structures

called encoding and numBitsSent, indexed by edges. These data structures store, for

each of the edges currently being transferred, its encoding and the number of bits

sent so far.
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Parallelism. Rather than send edges one by one, each player will send up to Λ2

edges in parallel. To see the intuitive reason for doing so, consider the transfer of a

typical edge e, which spans multiple transmissions. As Alice sends e chunk by chunk

to Bob, she simultaneously receives information from him, which in turn may lead

her to believe that she should be sending an edge other than e. The problem is, she

can never be sure! Simply aborting the transfer of e is wasteful if e later turns out to

be the right edge to send. Instead, we allow transfer of several edges in parallel and

use an additional, credit-based mechanism for identifying and aborting unpromising

transfers.

Specifically, each player maintains an ordered list L of edges that he or she is currently

transferring. New edges are inserted in L at the front rather than back, reflecting that

view that new information should be prioritized over old. To prepare a transmission,

a player looks at the first Λ2 edges in L and takes a chunk of each. If L has fewer

than Λ2 edges, the player simply takes a chunk of each edge in L. The concatenation

of these chunks, ordered the same way as the corresponding edges in L, forms a page,

which we view as a symbol from an auxiliary alphabet Σin. Since an edge chunk is a

4 bits long, the size of Σin is bounded by a constant:

|Σin| =
Λ2∑
i=0

24i =
16Λ2+1 − 1

15
. (4.5.1)

Credit. As a crucial component of the transfer scheme, Alice and Bob each main-

tain a data structure called credit. This data structure is indexed by edges and stores

the amount of “funds” available to pay for the transfer of any given edge e. The credit

of every edge is initialized to 0 at the beginning, and remains nonnegative from then

on. Every receive-send cycle identifies an edge e to send, which then gets a credit

increase of Λ and is additionally inserted in L unless it is already there. Any time an

edge chunk is sent, the credit of the corresponding edge is decreased by 1. An edge
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remains in L until its credit reaches 0 or until its last chunk is sent, whichever comes

first. At that point, the edge is removed from L.

Metadata. The purpose of the metadata in each edge chunk is to allow the receiver

to correctly piece together the encodings of the edges. A chunk for an edge e is always

prepared at send time rather than in advance and includes the following four bits:

the next bit of the encoding of e; a bit to indicate if this is the first chunk for e; a bit

to indicate if this is the last chunk for e; and a bit to indicate if e’s credit has reached

zero. The last two bits alert the receiver to the removal of e from the sender’s edge

list.

4.5.2. The simulation. Algorithm 4 gives the pseudocode to support our edge

encoding and transfer scheme. The pseudocode is identical for Alice and Bob and

features the following three operations.

(i) AddEdge is executed once by each player during his or her receive-send

cycle. As an argument, it receives an edge which that player wants to send

next. If e is already on the player’s edge list, AddEdge simply increments

e’s credit by Λ. If not, AddEdge increments e’s credit by Λ, computes an

encoding of e relative to the player’s current transmission count, and adds e

to the edge list ahead of any existing edges.

(ii) NextChunk receives as an argument an edge e and returns the next 4-bit

chunk of that edge, based on the stored encoding of e and the number of bits

of e’s encoding sent so far. This procedure uses numBitsSent(e), credit(e),

and encoding(e) to correctly set the metadata for the chunk. It then updates

numBitsSent(e) and credit(e) to reflect the remaining number of bits to send

and the edge’s available credit.
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1 Global variables: encoding, numBitsSent, credit, L

2 Procedure AddEdge(e, i)
3 credit(e)← credit(e) + Λ

4 if e /∈ L then
5 encoding(e)← encoding of e based on current transmission count i
6 numBitsSent(e)← 0

7 prepend e to L, ahead of any existing edges
8 end

9 Procedure NextChunk(e)
// Update edge statistics

10 numBitsSent(e)← numBitsSent(e) + 1

11 credit(e)← credit(e)− 1

// Compute edge chunk
12 return (encoding(e))numBitsSent(e)
13 ◦ I[numBitsSent(e) = 1]

14 ◦ I[numBitsSent(e) = |encoding(e)|]
15 ◦ I[credit(e) = 0]

16 Procedure NextPage()
17 page← NextChunk(L[1])

18 ◦ NextChunk(L[2])

19 ◦ · · ·
20 ◦ NextChunk(L[min{Λ2, |L|}])

// Clean up the edge list
21 foreach e ∈ L do
22 if credit(e) = 0 or numBitsSent(e) = |encoding(e)| then
23 remove e from L

24 end
25 end
26 return page

Algorithm 4: Edge operations (identical for Alice and Bob). In the pseudocode
above, ◦ denotes string concatenation, |L| denotes the number of edges in L, and
L[i] denotes the ith edge in L.

(iii) NextPage is the procedure that assembles the next page to send. The page

is made up of at most Λ2 chunks, one for each of the first Λ2 edges on the
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Input: X (set of Alice’s edges)

1 L← ∅

2 credit(e)← 0 for every edge e

3 e← the edge in X incident to the root

4 AddEdge(e, 1)

5 page← NextPage()

6 encode and send page

7 foreach i = 1, 2, 3, . . . , N do

8 receive a symbol ri ∈ Σout

9 s← DecodeC,α(r1r2 . . . ri)

10 interpret s as a sequence B of even-depth edges

11 `← maximum length of a rooted path in X ∪B

12 compute the shortest prefix of B s.t. X ∪B contains a rooted path of length `,
and let P be the rooted path so obtained

13 out← deepest vertex in P

14 if i ≤ N − 1 then
15 e← the deepest edge in P ∩X whose proper predecessors in X have all

been sent

16 AddEdge(e, i + 1)

17 page← NextPage()

18 encode and send page

19 end
20 end

Algorithm 5: Coding scheme for Alice

edge list. The chunks are prepared using NextChunk. Once the page is

assembled, NextPage updates the edge list by removing edges that have

been fully sent or have no credit left.

The overall interactive coding scheme is given by Algorithms 5 and 6 for Alice and

Bob, respectively. The main novelty relative to the scheme of Section 4.4 are the

calls to AddEdge and NextPage, which a player executes as soon as he or she has
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Input: Y (set of Bob’s edges)

1 L← ∅

2 credit(e)← 0 for every edge e

3 foreach i = 1, 2, 3, . . . , N do

4 receive a symbol ri ∈ Σout

5 s← DecodeC,α(r1r2 . . . ri)

6 interpret s as a sequence A of odd-depth edges

7 `← maximum length of a rooted path in Y ∪A

8 compute the shortest prefix of A s.t. Y ∪A contains a rooted path of length `,
and let P be the rooted path so obtained

9 out← deepest vertex in P

10 e← the deepest edge in P ∩ Y whose proper predecessors in Y have all been
sent

11 AddEdge(e, i)

12 page← NextPage()

13 encode and send page

14 end

Algorithm 6: Coding scheme for Bob

identified an edge e to send. Apart from that, the remarks made in Section 4.4 apply

here in full. In particular, α = α(ε) ∈ (0, 1) and N = N(n, α) are parameters to be

chosen later. We set

Λ =

⌈
2

α

⌉
(4.5.2)

and fix an arbitrary α-good code C : Σ∗in → Σ∗out whose existence is ensured by The-

orem 4.9. That theorem implies, in view of (4.5.1) and (4.5.2), that

|Σout| ≤ 2O(1/α3). (4.5.3)

Alice and Bob use C to encode every transmission. In particular, the encoded sym-

bol from Σout at any given point depends not only on the symbol from Σin being
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transmitted but also on the content of the previous transmissions by the sender. The

decoding is again done using the DecodeC,α algorithm of Theorem 4.17. Note from

the pseudocode that Alice and Bob send at most N transmissions each.

It remains to elaborate on the decoding and interpretation steps in the interactive

coding scheme. To do so, we first prove that the sequence of pages sent by one of the

players at any given point reveals the sequence of edges that that player has fulfilled

so far.

Lemma 4.35. Consider an arbitrary point in time, and let p1, p2, . . . , pt ∈ Σin be the

sequence of pages sent by one of the players so far. Then that sequence uniquely

identifies the corresponding sequence of edges e1, e2, . . . , et′ fulfilled by that player.

Proof. We first reconstruct as completely as possible the sender’s state at the times

when each of the pages p1, p2, . . . , pt has just been assembled. Specifically, we de-

termine the length of the sender’s edge list, the transmission status of every edge

on the edge list (in progress, aborted, or fulfilled), and the corresponding part of

the encoding transferred for every edge so far. This reconstruction process involves

working inductively through the page sequence p1, p2, . . . , pt and using the metadata

to identify when an edge is new, in progress, aborted, or fulfilled. Recall that there is

at most one new edge per page, and it is always inserted at the front of the edge list.

The first stage reconstructs the complete list of edge encodings sent so far by the

sender, along with the final status of each encoding (in progress, aborted, or ful-

filled), and the start and end times of each fulfilled encoding. We then interpret the

fulfilled encodings as a sequence (m1, j1, σ1), (m2, j2, σ2), . . . , (mt′ , jt′ , σt′) of edge rep-

resentations. Using the end times of the fulfilled encodings and their indices inside

the pages than fulfilled them, we can reconstruct the corresponding sequence of edges

e1, e2, . . . , et′ via an inductive process analogous to that in Lemma 4.20. �
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With Lemma 4.35 in hand, the decoding and interpretation steps in lines 9–10 for

Alice and lines 5–6 for Bob are implemented the same way they were for a large al-

phabet. Specifically, the decoding step produces a codeword s of C, which by Fact 4.8

corresponds to a unique string in Σ∗in. This string is by definition a sequence of pages

p1, p2, p3, . . . , from which the receiving party can reconstruct the corresponding se-

quence of fulfilled edges using the inductive procedure of Lemma 4.35. It may happen

that the page sequence p1, p2, p3, . . . is syntactically malformed; in that case, the re-

ceiving party interrupts the interpretation process at the longest prefix of p1, p2, p3, . . .

that corresponds to a legitimate sequence of edges. This completes the interpretation

step, yielding a sequence of edges A for Bob and B for Alice.

Analogous to the interactive coding scheme of Section 4.4, Alice and Bob each main-

tain a variable called out. In Sections 4.5.3–4.5.7 below, we will examine an arbitrary

but fixed execution of the interactive coding scheme. In particular, we will henceforth

consider the inputs X and Y and the adversary’s actions to be fixed. We allow any

behavior by the adversary as long as it meets one of the criteria (i), (ii) in Theo-

rem 4.34. We will show that as soon as the communication stops, out is set for both

Alice and Bob to the leaf vertex of the unique root-to-leaf path in X ∪ Y . This will

prove Theorem 4.34.

4.5.3. Fundamental notions and facts. We adopt the notation and definitions

of Sections 4.4.2–4.4.6 in their entirety. These items carry over without any changes

because they pertain to the lowest level of abstraction (the “data link layer,” as it

were), which cannot distinguish between the old and new interactive coding schemes.

As a consequence, all results proved in Sections 4.4.2–4.4.6 apply here in full, with the

exception are Lemmas 4.22 and 4.23 whose wording needs to be clarified by replacing

“sent edges” with “fulfilled edges.” The result of this cosmetic modification is as

follows.
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Lemma 4.36. Let t ∈ {1, 2, . . . , T} be given. Then:

(i) the string 6 ∗(S ′[1, t]) uniquely identifies the sequence of protocol tree edges that

Bob fulfills over the course of transmissions 1, 2, . . . , t;

(ii) the string 6 ∗(S ′′[1, t]) uniquely identifies the sequence of protocol tree edges

that Alice fulfills over the course of transmissions 1, 2, . . . , t.

Proof. By symmetry, it suffices to prove the former claim. By Fact 4.8, the codeword

6 ∗(S ′[1, t]) ∈ Σ∗out corresponds to a unique string in Σ∗in, which is the sequence of pages

that Bob sends Alice over the course of the first t transmissions. By Lemma 4.35,

this sequence of pages uniquely identifies the corresponding fulfilled edges. �

Lemma 4.37. Let t ∈ {1, 2, . . . , T} be given.

(i) If t ∈ E ′, then on receipt of transmission t, Alice is able to correctly recover

the complete sequence of edges that Bob has fulfilled by that time.

(ii) If t ∈ E ′′, then on receipt of transmission t, Bob is able to correctly recover

the complete sequence of edges that Alice has fulfilled by that time.

Proof. By symmetry, it again suffices to prove the former claim. Let t ∈ E ′. Then by

definition, SD(S ′[1, t], R′[1, t]) < 1− α. Taking k =∞ in Theorem 4.17, we conclude

that DecodeC,α(6 ∗(R′[1, t])) = 6 ∗(S ′[1, t]). This means that on receipt of transmission

t, Alice is able to correctly recover the entire codeword 6 ∗(S ′[1, t]) that Bob has sent

her so far. By Lemma 4.36, this in turn makes it possible for Alice to correctly identify

the corresponding sequence of fulfilled edges. �

4.5.4. Full pages. Recall that a page can contain at most Λ2 edge chunks. If a

page contains exactly Λ2 chunks, we call it full. We define F ′ ⊆ {1, 2, . . . , T} as the

set of transmissions where Alice sends a full page, and analogously F ′′ ⊆ {1, 2, . . . , T}
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as the set of transmissions where Bob sends a full page. In other words,

F ′ = {i : S ′′[i, i] is a full page},

F ′′ = {i : S ′[i, i] is a full page}.

We abbreviate

F = F ′ ∪ F ′′.

The following lemma, due to Braverman et al. [25, Lemma D.1], shows that full

pages are relatively uncommon.

Proposition 4.38 (Braverman et al.). For any interval J such that 1 ∈ J,

|F |J ≤
|J ∩ {1, 2, 3, . . . , T}|

Λ
.

Proof (adapted from Braverman et al.) Since F ⊆ {1, 2, . . . , T}, the proposition is

equivalent to the following statement:

|F ∩ {1, 2, . . . , t}| ≤ t

Λ

for all 1 ≤ t ≤ T. The proof proceeds by a potential argument. The potential function

to consider is the sum of the credit values of Alice’s edges. This quantity is always

nonnegative and is initially zero. Any full page sent by Alice causes a decrement of

the credit counter for each edge in the page, decreasing the potential function by Λ2.

On the other hand, any increase in the potential function is due to the arrival of a

symbol (i.e., a good event or insertion addressed to Alice) and is precisely Λ. Since

the potential function is nonnegative, we conclude that

Λ|F ′ ∩ {1, 2, . . . , t}| ≤ |(G′ ∪ I ′) ∩ {1, 2, . . . , t}|.
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Analogously,

Λ|F ′′ ∩ {1, 2, . . . , t}| ≤ |(G′′ ∪ I ′′) ∩ {1, 2, . . . , t}|.

Therefore,

Λ|F ∩ {1,2, . . . , t}|

≤ Λ|F ′ ∩ {1, 2, . . . , t}|+ Λ|F ′′ ∩ {1, 2, . . . , t}|

≤ |(G′ ∪ I ′) ∩ {1, 2, . . . , t}|+ |(G′′ ∪ I ′′) ∩ {1, 2, . . . , t}|. (4.5.4)

Parts (i), (ii), and (vii) of Lemma 4.21 imply that G′, G′′, I ′, I ′′ are pairwise disjoint.

Therefore, the right-hand side of (4.5.4) does not exceed t. �

4.5.5. Finish times. We adopt the notation and definitions of Section 4.4.7,

and review them here for the reader’s convenience. Let e1, e2, . . . , en be the edges of

the unique root-to-leaf path in X ∪ Y, listed in increasing order of depth. Recall that

a transmission fulfills an edge e if the corresponding page sent by the sender carries

the last bit of an encoding of e. For i = 1, 2, . . . , n, define fi to be the index of the

first transmission that fulfills ei (whether or not that transmission is subject to an

attack). If ei is never fulfilled, we set fi = ∞. For notational convenience, we also

define f0 = f−1 = f−2 = · · · = 0. Recall from the description of the interactive coding

scheme that Alice never starts sending an edge e unless she has finished sending all

proper predecessors of e in X, and analogously for Bob. This gives

f1 ≤ f3 ≤ f5 ≤ · · · ,

f2 ≤ f4 ≤ f6 ≤ · · · .
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The overall sequence f1, f2, f3, f4, f5, f6, . . . need not be in sorted order, however, due

to interference by the adversary. We abbreviate

fi = max{0, f1, f2, . . . , fi}.

By basic arithmetic,

[fi−1, fi) = [fi−1, fi), i = 1, 2, . . . , n. (4.5.5)

Analogous to the analysis in Section 4.4.7, we need to bound the virtual length of

each interval [fi−1, fi). To this end, we first bound the bit length of any encoding of

ei.

Lemma 4.39. For given integers i and t, suppose that an encoding of ei is computed

prior to the sending of transmission t. Then that encoding has bit length at most

dlog(t− fi−2)e+ d2 log Λ|Σ|e.

Proof. Recall that ei is encoded as a triple (m, j, σ), where m is the number of trans-

missions sent by the sender since his or her page that contained the last bit of ei−2

(for i ≥ 3) or since the beginning of time (for i = 1, 2); j ∈ {1, 2, . . . ,Λ2} identifies

ei−2 inside that page; and σ ∈ Σ × Σ identifies ei relative to ei−2. The pair (j, σ)

takes on Λ2|Σ|2 distinct values and can therefore be represented by a binary string

of fixed length d2 log Λ|Σ|e. The remaining component m is a nonnegative integer of

magnitude at most t − fi−2 − 1 and can therefore be represented by a binary string

of length dlog(t − fi−2)e in the usual manner: ε, 1, 10, 11, 100, . . . for 0, 1, 2, 3, 4, . . . ,

respectively. �

We are now in a position to analyze the virtual length of any interval [fi−1, fi). The

lemma that we are about to prove is a counterpart of Lemma 4.31.
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Lemma 4.40. For any t ∈ {1, 2, . . . , T} and i with fi−1 ≤ t < fi,

‖̃[fi−1, t]‖̃ ≤
2Λ

Λ− 1
|B|[fi−1,t]

+ 2|F |[fi−1,t]

+ 2dlog(t − fi−2)e + 2d2 log 2Λ|Σ|e.

Proof. We will only treat the case of i odd; the proof for even i can be obtained by

swapping the roles of Alice and Bob below.

For an edge e of the protocol tree, let credit(e, j) denote the value of credit(e) on

Alice’s side at the moment when transmission j enters the communication channel,

i.e., immediately after the sender of transmission j has executed NextPage. For

notational convenience, we also define credit(e, 0) = 0 for all e. Let s ∈ [fi−1, t+ 1] be

the smallest integer such that credit(ei, j) > 0 for j = s, s+ 1, . . . , t. Then

[fi−1, t] ⊆ [fi−1, s− 1) ∪ [s− 1, s) ∪ [s, t].

With this in mind, we complete the proof of the lemma by bounding the virtual length

of each interval on the right-hand side and summing the resulting bounds. Key to

our analysis are the following two claims.

Claim 4.41. |E ′|[fi−1,s−1) ≤ |B′|[fi−1,s−1)/(Λ− 1).

Proof. Consider any transmission j ∈ E ′ ∩ [fi−1, t). Lemma 4.37 ensures that on

receipt of transmission j, Alice is able to correctly recover the complete set of edges

that Bob has finished sending her by that time, which includes e2, e4, e6, . . . , ei−1. At

that same time, Alice has finished sending Bob e1, e3, e5, . . . , ei−2 but not ei, as one

can verify from fi−1 ≤ j < t < fi. Therefore, the arrival of transmission j causes

Alice to increase the credit of ei by Λ in the call to AddEdge. The subsequent call

to NextPage either leaves ei’s credit unchanged or decreases it by 1.

126



We now return to the proof of the claim. If [fi−1, s−1) = ∅, the claim holds trivially.

In the complementary case, the definition of s ensures that

credit(ei, s− 1) = 0. (4.5.6)

By the previous paragraph, the net effect of an incoming excellent transmission in the

interval [fi−1, t) is to increase ei’s credit by at least Λ− 1, whereas none of the other

incoming symbols decrease ei’s credit by more than 1. Since credit is always nonneg-

ative, we conclude from (4.5.6) that the number of incoming excellent transmissions

in the interval [fi−1, s − 1) is at most a 1/(Λ − 1) fraction of the number of Alice’s

other incoming symbols in that interval. Formulaically, this conclusion translates to

|E ′|[fi−1,s−1) ≤
1

Λ− 1
|(G′ ∪ I ′) \ E ′|[fi−1,s−1),

which is equivalent to the claimed inequality by the definition of B′. �

Claim 4.42. |G′′ ∪D′′|[s,t] ≤ |F ′|[s,t] + dlog(t− fi−2)e+ d2 log Λ|Σ|e.

Proof. By the choice of s, the credit of ei is positive when transmissions s, s+ 1, . . . , t

enter the communication channel. Since Alice does not fulfill ei before or during

transmission t < fi, we conclude that ei is continuously present on Alice’s edge list

as transmissions s, s+ 1, . . . , t are prepared by their respective senders. In particular,

every transmission among s, s + 1, . . . , t that is sent by Alice must contain a bit of

the encoding of ei unless it is a full page. We conclude that

|G′′ ∪D′′|[s,t] ≤ |F ′|[s,t] + L,

where by definition G′′ ∪ D′′ is the set of transmissions sent by Alice, F ′ is the set

of transmissions sent by Alice that are full pages, and L stands for the bit length

of ei’s encoding. This completes the proof in view of the upper bound on L in

Lemma 4.39. �

127



It remains to put everything together. We have

‖̃[fi−1, s− 1)‖̃ ≤ 2(|B|[fi−1,s−1) + |E ′|[fi−1,s−1)) + 1

≤ 2

(
|B|[fi−1,s−1) +

1

Λ− 1
|B′|[fi−1,s−1)

)
+ 1

≤ 2Λ

Λ− 1
|B|[fi−1,s−1) + 1, (4.5.7)

where the first and second steps follow from Lemma 4.29 and Claim 4.41, respectively.

Similarly,

‖̃[s, t]‖̃ ≤ 2(|B|[s,t] + |E ′′|[s,t]) + 1

≤ 2(|B|[s,t] + |G′′|[s,t]) + 1

≤ 2(|B|[s,t] + |F ′|[s,t] + dlog(t− fi−2)e+ d2 log Λ|Σ|e) + 1

≤ 2(|B|[s,t] + |F |[fi−1,t]
+ dlog(t− fi−2)e+ d2 log Λ|Σ|e) + 1, (4.5.8)

where the first and second steps follow from Lemma 4.29 and Claim 4.42, respectively.

Finally,

‖̃[s− 1, s)‖̃ = ‖̃{s− 1}‖̃

≤ 2. (4.5.9)

Adding the bounds in (4.5.7)–(4.5.9) proves the lemma. �

4.5.6. The progress lemma. We have reached the technical centerpiece of our

analysis, which is the counterpart of Lemma 4.32 for a large alphabet. Analogous

to that earlier lemma, the result that we are about to prove shows that any suffi-

ciently long execution of the interactive coding scheme with a sufficiently low virtual

corruption rate allows Alice and Bob to exchange all the n edges of the unique root-

to-leaf path in X ∪ Y, and moreover this progress is not “undone” by any subsequent
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attacks by the adversary. Our exposition below emphasizes the similarities between

Lemma 4.32 and the new result.

Lemma 4.43 (Progress lemma). Let t ∈ {1, 2, . . . , T} be given with

‖̃[1, t]‖̃ ≥ cn

α
log
|Σ|
α
, (4.5.10)

corr[1, t] ≤ 1

4
− α, (4.5.11)

where c ≥ 1 is a sufficiently large absolute constant. Then there is an integer t∗ ≤ t

such that

[fn, t
∗) ∩ E ′ 6= ∅, (4.5.12)

[fn, t
∗) ∩ E ′′ 6= ∅, (4.5.13)

∆(S ′[i, t], R′[i, t]) < 1− α, i = 1, 2, . . . , t∗, (4.5.14)

∆(S ′′[i, t], R′′[i, t]) < 1− α, i = 1, 2, . . . , t∗. (4.5.15)

Proof. Equations (4.5.14) and (4.5.15) hold vacuously for t∗ = 0. In what follows, we

will take t∗ ∈ {0, 1, 2, . . . , t} to be the largest integer for which (4.5.14) and (4.5.15)

hold. For the sake of contradiction, assume that at least one of the remaining desider-

ata (4.5.12), (4.5.13) is violated, whence

‖̃[fn, t∗)‖̃ ≤ 2|B|[fn,t∗) + 1 (4.5.16)

by Lemma 4.29. The proof strategy is to show that (4.5.16) is inconsistent with the

hypothesis of the lemma. To this end, let n∗ ∈ {0, 1, 2, . . . , n} be the largest integer

such that fn∗ ≤ t∗. Then we have the partition

[0, t] = [f0, f1) ∪ [f1, f2) ∪ · · · ∪ [fn∗−1, fn∗) ∪ [fn∗ , t
∗) ∪ {t∗} ∪ (t∗, t].
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The bulk of our proof is concerned with bounding the virtual length of each of the

intervals on the right-hand side.

Abbreviate

M = 2d2 log 2Λ|Σ|e+ 2. (4.5.17)

Then

‖̃[fi−1, fi)‖̃ = ‖̃[fi−1, fi)‖̃

≤ 2Λ

Λ− 1
|B|[fi−1,fi)

+ 2|F |[fi−1,fi)
+ 2 log(fi − fi−2) +M

≤ 2Λ

Λ− 1
|B|[fi−1,fi)

+ 2|F |[fi−1,fi)
+ 2 log(fi − fi−2) +M (4.5.18)

for any i = 1, 2, . . . , n∗, where the first and third steps use (4.5.5), and the second

step follows from Lemma 4.40. Next, the upper bound

‖̃[fn∗ , t∗)‖̃ ≤
2Λ

Λ− 1
|B|[fn∗ ,t∗) + 2|F |[fn∗ ,t∗)

+ 2 log(t∗ − fn∗−1) + M (4.5.19)

follows from Lemma 4.40 if n∗ < n and from (4.5.16) if n∗ = n. The virtual length of

the singleton interval {t∗} can be bounded from first principles:

‖̃{t∗}‖̃ ≤ 2. (4.5.20)

Finally, recall from the definition of t∗ that either max{∆(S ′[t∗ + 1, t], R′[t∗ + 1, t]),

∆(S ′′[t∗ + 1, t], R′′[t∗ + 1, t])} ≥ 1− α or t∗ = t, leading to

‖̃(t∗, t]‖̃ ≤ 4

1− α
|D|(t∗,t] + 1 (4.5.21)

by Lemma 4.28 in the former case and trivially in the latter.
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It remains to put together the upper bounds in (4.5.18)–(4.5.21). We have

‖̃[1, t∗)‖̃ ≤ 2Λ

Λ− 1
|B|[0,t∗) + 2|F |[0,t∗) + (n∗ + 1)M

+ 2
n∗∑
i=1

log(fi − fi−2) + 2 log(t∗ − fn∗−1)

≤ 2Λ

Λ− 1
· 2

1− α
|D|[0,t∗) +

2t∗

Λ
+ (n∗ + 1)M

+ 2
n∗∑
i=1

log(fi − fi−2) + 2 log(t∗ − fn∗−1)

≤ 2Λ

Λ− 1
· 2

1− α
|D|[0,t∗) +

2t∗

Λ
+ (n∗ + 1)M

+ 2(n∗ + 1) log

∑n∗

i=1(fi − fi−2) + (t∗ − fn∗−1)

n∗ + 1

=
2Λ

Λ− 1
· 2

1− α
|D|[0,t∗) +

2t∗

Λ
+ (n∗ + 1)M

+ 2(n∗ + 1) log
fn∗ + t∗

n∗ + 1

≤ 2Λ

Λ− 1
· 2

1− α
|D|[0,t∗) +

2t∗

Λ
+ (n∗ + 1)M

+ 2(n∗ + 1) log
2t∗

n∗ + 1

≤ 4

(1− α)2
|D|[0,t∗) + α‖̃[1, t]‖̃+ 2(n∗ + 1) ·

⌈
1 + 2 log 2|Σ|

⌈
2

α

⌉⌉
+ 2(n∗ + 1) log

2‖̃[1, t]‖̃
n∗ + 1

≤ 4

(1− α)2
|D|[0,t∗) + 2α‖̃[1, t]‖̃ − 3, (4.5.22)

where the first step follows from (4.5.18) and (4.5.19); the second step applies Lem-

mas 4.25 and 4.38; the third step is valid by the concavity of the logarithm function;

the next-to-last step is immediate from (4.5.2), (4.5.17), and t∗ ≤ t ≤ ‖̃[1, t]‖̃; and
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the last step follows from (4.5.10) and n∗ ≤ n. Adding (4.5.20)–(4.5.22), we obtain

‖̃[1, t]‖̃ ≤ 4

(1− α)2
|D|[0,t] + 2α‖̃[1, t]‖̃,

or equivalently

corr[1, t] ≥ (1− 2α)(1− α)2

4
.

This conclusion is inconsistent with (4.5.11) since 0 < α < 1. We have reached

the desired contradiction and thereby proved that t∗ satisfies each of the properties

(4.5.12)–(4.5.15). �

4.5.7. Finishing the proof. We have reached a “master theorem” analogous to

Theorem 4.33 for a large alphabet, which gives a sufficient condition for Alice and

Bob to assign the correct value to their corresponding copies of the out variable. Once

established, this new result will allow us to easily finish the proof of Theorem 4.34.

Theorem 4.44. Consider a point in time when Alice updates her out variable, and

fix a corresponding integer t ≤ T such that 6 ∗(R′[1, t]) is the complete sequence of

symbols that Alice has received by that time. Assume that

‖̃[1, t]‖̃ ≥ cn

α
log
|Σ|
α
, (4.5.23)

corr[1, t] ≤ 1

4
− α, (4.5.24)

where c ≥ 1 is the absolute constant from Lemma 4.43. Then as a result of the update,

out is set to the leaf vertex in the unique root-to-leaf path in X ∪ Y. An analogous

theorem holds for Bob.

Proof. Analogous to the proof of Theorem 4.33 for a large alphabet, with the difference

that the newly obtained Lemmas 4.36 and 4.43 should be used instead of their large-

alphabet counterparts (Lemmas 4.22 and 4.32). �
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We now establish the main result of this chapter.

Proof of Theorem 4.34. The proof is nearly identical to that for a large alphabet

(Theorem 4.19). Recall that n = |π| denotes the communication cost of the original

protocol, and ε > 0 is a constant in the statement of Theorem 4.19. Consider the

interactive coding scheme given by Algorithms 5 and 6 with parameters set according

to

α =
ε

4
, (4.5.25)

N =

⌈
cn

2α
log
|Σ|
α

⌉
+ 1, (4.5.26)

where c ≥ 1 is the absolute constant from Lemma 4.43. Then by (4.5.3), the in-

teractive coding scheme uses an alphabet of size at most 2O(1/ε3) = O(1). Further-

more, the combined number of transmissions sent by Alice and Bob does not exceed

2N = O(n
ε

log |Σ|
ε

) = O(|π| log |Σ|).

It remains to show that when the communication stops, out is set for both Alice and

Bob to the leaf vertex on the unique root-to-leaf path in X ∪ Y. To this end, recall

from (4.5.25) and Lemma 4.30 that

corr[1, T ] ≤ 1

4
− 2α. (4.5.27)

By (4.5.26) and Lemma 4.27,

‖̃[1, T ]‖̃ ≥ cn

α
log
|Σ|
α

+ 2 (4.5.28)

and therefore

‖̃[1, T − 1]‖̃ ≥ cn

α
log
|Σ|
α
. (4.5.29)
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Also,

corr[1, T − 1] ≤ ‖̃[1, T ]‖̃
‖̃[1, T − 1]‖̃

· corr[1, T ]

≤

(
1 +

2

‖̃[1, T − 1]‖̃

)
· corr[1, T ]

≤
(

1 +
2α

n

)
·
(

1

4
− 2α

)
≤ 1

4
− α, (4.5.30)

where the third step uses (4.5.27) and (4.5.29). Now, consider the last time that Alice

and Bob update their copies of out. The complete sequence of symbols that Alice has

received at the time of her last update is 6 ∗(R′[1, T − 1]) or 6 ∗(R′[1, T ]). Likewise, the

complete sequence of symbols that Bob has received at the time of his last update is

6 ∗(R′′[1, T − 1]) or 6 ∗(R′′[1, T ]). By (4.5.27)–(4.5.30) and Theorem 4.44, both players

set out to the leaf vertex in the unique root-to-leaf path in X ∪ Y. �

4.5.8. Generalization to early output. Following Braverman et al. [25], we

now consider the setting when Alice and Bob need to be ready with their answers

by a certain round (based on each player’s own counting) rather than when the

communication stops. Let Π be an interactive coding scheme. We define the δ-early

output for a player in Π as the chronologically ordered sequence of the player’s first

δ|Π|/2 symbols sent (or all of them, if the player sends fewer than δ|Π|/2 symbols)

and first δ|Π|/2 symbols received (or all of them, if the player receives fewer than

δ|Π|/2 symbols). In this early output model, Alice and Bob are still expected to run

their protocol to completion, which happens when one or both of them have finished

|Π|/2 rounds of communication. The only difference is what information they use

when computing their answers. Both Definition 4.10 and Theorem 4.34(i) generalize

to the setting of early output, as follows.
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Definition 4.45 (Coding scheme with early output). Let π be a given protocol with

input space X ×Y . Protocol Π is an interactive coding scheme for π with corruption

rate ε and δ-early output if:

(i) Π has input space X × Y and is in canonical form;

(ii) there are functions f ′, f ′′ such that for any pair of inputs X ∈ X and Y ∈ Y

and any actions by an adversary with corruption rate ε, Alice’s δ-early output

a and Bob’s δ-early output b satisfy f ′(a) = f ′′(b) = π(X, Y ).

Theorem 4.46. Fix arbitrary constants ε > 0 and 0 < δ ≤ 1, and let π be an

arbitrary protocol with alphabet Σ. Then there exists an interactive coding scheme for

π with alphabet size O(1) and communication cost O(|π| log |Σ|) with δ-early output

that tolerates corruption rate (1
4
− ε)δ.

Proof. Let n = |π| denote the communication cost of the original protocol. Con-

sider the interactive coding scheme given by Algorithms 5 and 6 with parameters set

according to

α =
ε

2
, (4.5.31)

N =

⌈
cn

αδ
log
|Σ|
α

+
3

αδ

⌉
, (4.5.32)

where c ≥ 1 is the absolute constant from Lemma 4.43. Then by (4.5.3), the in-

teractive coding scheme uses an alphabet of size at most 2O(1/ε3) = O(1). Further-

more, the combined number of transmissions sent by Alice and Bob does not exceed

2N = O( n
εδ

log |Σ|
ε

) = O(|π| log |Σ|).

It remains to show that each player’s δ-early output uniquely determines the output

of π. We will prove the following much stronger statement: at any point in time when

one of the players has processed δ|Π|/2 = δN or more incoming symbols, the variable

out is set for both Alice and Bob to the leaf vertex of the unique root-to-leaf path
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in X ∪ Y. This will prove the theorem since one of the players is always guaranteed

to be able to run the protocol to completion and in particular to receive |Π|/2 = N

symbols.

We now provide the details. Fix any integer t ∈ {1, 2, . . . , T} such that at least one of

the players receives δ|Π|/2 or more symbols over the course of transmissions 1, 2, . . . , t.

This is equivalent to saying that max{|G′ ∪ I ′|[1,t], |G′′ ∪ I ′′|[1,t]} ≥ δN. Lemma 4.26

implies that

‖̃[1, t]‖̃ ≥ 2δN − 1. (4.5.33)

Now

max{corr[1, t− 1], corr[1, t]} ≤ |D|
‖̃[1, t− 1]‖̃

≤
(

1
4
− ε
)
δ · 2N

2δN − 3

≤ 1

4
− α, (4.5.34)

where the second step follows from the bound |D| ≤ (1
4
− ε)δ · 2N in the hypothesis

of the theorem, and the third step uses (4.5.31)–(4.5.33). Moreover, (4.5.32) and

(4.5.33) ensure that

‖̃[1, t]‖̃ ≥ ‖̃[1, t− 1]‖̃ ≥ cn

α
log
|Σ|
α
. (4.5.35)

Now, consider the last time that Alice and Bob update their copies of out over the

course of transmissions 1, 2, . . . , t. The complete sequence of symbols that Alice has

received at the time of her update is 6 ∗(R′[1, t−1]) or 6 ∗(R′[1, t]). Likewise, the complete

sequence of symbols that Bob has received at the time of his update is 6 ∗(R′′[1, t− 1])

or 6 ∗(R′′[1, t]). By (4.5.34), (4.5.35), and Theorem 4.44, both players set out to the

leaf vertex in the unique root-to-leaf path in X ∪ Y. �
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In the terminology of our work, Braverman et al. [25] studied interactive coding

schemes with (1 − 2η)-early output that tolerate corruption rate η. As their main

result, they proved the existence of such a scheme with alphabet size O(1) and com-

munication cost O(|π| log |Σ|) for any constant η < 1/18. They also showed that no

such scheme exists in general for η ≥ 1/6. Our work closes the gap between the 1/18

and 1/6, establishing the existence of an interactive coding scheme for any π and

any constant η < 1/6. This can be seen by taking δ = 1 − 2η and ε = 1
4
− η

1−2η
in

Theorem 4.46.

4.5.9. Optimality. We now establish the optimality of Theorem 4.34, showing

that it tolerates the highest possible corruption rate and normalized corruption rates.

We do so by studying the pointer jumping protocol PJPn, defined for n ≥ 1 as

the protocol with input space {0, 1}n × {0, 1}n in which Alice and Bob exchange

their strings one bit at a time, taking turns after every bit. Thus, the sequence of

symbols exchanged on input (x, y) is x1y1 . . . xnyn.We show that no interactive coding

scheme with alphabet size 2o(n) for PJPn can tolerate a corruption rate, or normalized

corruption rates, higher than those tolerated by Theorem 4.34 with a constant-size

alphabet. Our proof uses the “cut and paste” technique of previous impossibility

results [26, 25]. We will first establish a detailed technical theorem and then deduce

our impossibility results as corollaries.

Theorem 4.47. Let εsubs, εoos ≥ 0 be given. Suppose that Π is an interactive coding

scheme with alphabet Σ for PJPn that tolerates normalized corruption rate (εsubs, εoos).

Then

εsubs +
3

4
εoos <

1

4
+

log |Σ|
n

. (4.5.36)

Proof. LetN = |Π|/2 be the number of communication rounds in Π. Since Π simulates

PJPn, the former produces at least as many distinct transcripts as the latter. This
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leads to |Σ|2N ≥ 4n and

N ≥ n

log |Σ|
. (4.5.37)

The centerpiece of the proof is the following claim.

Claim 4.48. The system

k ≤ εoos(2N − k), (4.5.38)⌈
N

2

⌉
− k ≤ εsubs(2N − k) (4.5.39)

has no integral solution 0 ≤ k ≤ dN/2e.

Proof. For the sake of contradiction, suppose that the system has a solution k ∈

{0, 1, 2, . . . , dN/2e}. Fix arbitrary x, y, y′ ∈ {0, 1}n with y 6= y′, and consider the

following two executions of Π.

(i) Alice and Bob receive inputs x and y, respectively. The adversary uses substi-

tution attacks to replace Bob’s first dN/2e−k responses to Alice with the corre-

sponding responses that he would send if his input were y′. Then the adversary

carries out k consecutive out-of-sync attacks, intercepting Alice’s transmissions

to Bob and sending back to Alice the responses that Bob would send at that

point if his input were y′. From then on, the adversary does not interfere with

the communication. We let σ1, σ2, . . . , σN ∈ Σ denote the complete sequence of

symbols that Alice receives in this execution.

(ii) Alice and Bob receive inputs x and y′, respectively. The adversary does not

interfere with the first bN/2c rounds of communication. As a result, the se-

quence of symbols that Alice receives in those rounds is σ1, σ2, . . . , σbN/2c. The

adversary tampers with every symbol delivered to Alice from then on, making

sure that she receives the sequence σbN/2c+1, . . . , σN−1, σN . The adversary does
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so using dN/2e − k consecutive substitution attacks followed by k consecutive

out-of-sync attacks. At that point, the communication stops because Alice has

received N symbols.

Both executions feature 2N − k transmissions, dN/2e − k substitution attacks, and

k out-of-sync attacks. By (4.5.38) and (4.5.39), these numbers of substitution and

out-of-sync attacks are legitimate under normalized corruption rate (εsubs, εoos). As

a result, Alice and Bob’s simulation of PJPn is correct in both executions. Since

PJPn produces different transcripts on (x, y) and (x, y′), we conclude that both Alice

and Bob are able to distinguish between the two executions. We have reached the

promised contradiction because the two executions look identical to Alice. �

We now return to the proof of the theorem. The values k ∈ [0, dN/2e] that sat-

isfy (4.5.38) form a subinterval of [0, dN/2e] that contains 0. Analogously, the val-

ues k ∈ [0, dN/2e] that satisfy (4.5.39) form a subinterval of [0, dN/2e] that contains

dN/2e. Since the system of these two inequalities has no integral solution in [0, dN/2e],

there exists k∗ ∈ [0, dN/2e − 1] such that k = k∗ + 1 and k = k∗ violate (4.5.38) and

(4.5.39), respectively:

εoos <
k∗ + 1

2N − k∗ − 1
,

εsubs <
dN/2e − k∗

2N − k∗
.

Taking a weighted sum of these inequalities with weights 3/4 and 1,

3

4
εoos + εsubs <

3

4
· k∗ + 1

2N − k∗ − 1
+

1
2
(N + 1)− k∗

2N − k∗

=
1

4
+

5N − k∗ − 1

2(2N − k∗ − 1)(2N − k∗)

≤ 1

4
+

1

N
,

where the last step uses k∗ ≤ (N − 1)/2. By (4.5.37), the proof is complete. �
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We now derive our claimed impossibility results as corollaries of Theorem 4.47.

Corollary 4.49. Suppose that for every n ≥ 1, there is an interactive coding scheme

for the pointer jumping protocol PJPn with alphabet size 2o(n) that tolerates normalized

corruption rate (εsubs, εoos). Then

εsubs +
3

4
εoos ≤

1

4
.

Proof. Substitute |Σ| = 2o(n) in Theorem 4.47 and pass to the limit as n→∞. �

Corollary 4.50. Suppose that for every n ≥ 1, there is an interactive coding scheme

for the pointer jumping protocol PJPn with alphabet size 2o(n) that tolerates corruption

rate ε. Then

ε ≤ 1

4
.

Proof. Any scheme that tolerates corruption rate ε must also tolerate normalized

corruption rate (ε, 0). Therefore, the claim follows by taking εsubs = ε and εoos = 0

in Corollary 4.49. �
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CHAPTER 5

Unbounded-error communication complexity of AC0

In this chapter, we discuss our lower bound results in the strongest communication

model, the unbounded-error communication complexity. Our proof relies on the ana-

lytic characterization described in Section 3.2.2. We first analyze the threshold degree

of AC0. This implies lower bounds on communication with weakly unbounded error.

Then we strengthen our analysis to that of sign rank of AC0, which in turn implies

stronger lower bounds on communication with unbounded error.

5.1. Introduction

A real polynomial p is said to sign-represent the Boolean function f : {0, 1}n → {0, 1}

if sgn p(x) = (−1)f(x) for every input x ∈ {0, 1}n. The threshold degree of f , de-

noted deg±(f), is the minimum degree of a multivariate real polynomial that sign-

represents f . Equivalent terms in the literature include strong degree [10], voting

polynomial degree [81], PTF degree [96], and sign degree [32]. Since any func-

tion f : {0, 1}n → {0, 1} can be represented exactly by a real polynomial of de-

gree at most n, the threshold degree of f is an integer between 0 and n. Viewed

as a computational model, sign-representation is remarkably powerful because it

corresponds to the strongest form of pointwise approximation. The formal study

of threshold degree began in 1969 with the pioneering work of Minsky and Pa-

pert [90] on limitations of perceptrons. The authors of [90] famously proved that

the parity function on n variables has the maximum possible threshold degree,
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n. They obtained lower bounds on the threshold degree of several other func-

tions, including DNF formulas and intersections of halfspaces. Since then, sign-

representing polynomials have found applications far beyond artificial intelligence.

In theoretical computer science, applications of threshold degree include circuit lower

bounds [81, 82, 114, 41, 14], size-depth trade-offs [100, 132], communication com-

plexity [114, 41, 116, 106, 14, 123, 122], structural complexity theory [16, 10]

and computational learning [78, 77, 97, 9, 119, 121, 35, 122, 136].

The notion of threshold degree has been especially influential in the study of AC0,

the class of constant-depth polynomial-size circuits with ∧,∨,¬ gates of unbounded

fan-in. The first such result was obtained by Aspnes et al. [10], who used sign-

representing polynomials to give a beautiful new proof of classic lower bounds for

AC0. In communication complexity, the notion of threshold degree played a critical

role in the first construction [114, 116] of an AC0 circuit with exponentially small

discrepancy and hence large communication complexity in nearly every model. That

discrepancy result was used in [114] to show the optimality of Allender’s classic

simulation of AC0 by majority circuits, solving the open problem [81] on the relation

between the two circuit classes. Subsequent work [42, 14, 125, 123] resolved other

questions in communication complexity and circuit complexity related to constant-

depth circuits by generalizing the threshold degree method of [114, 116].

Sign-representing polynomials also paved the way for algorithmic breakthroughs in

the study of constant-depth circuits. Specifically, any function of threshold degree

d can be viewed as a halfspace in
(
n
0

)
+
(
n
1

)
+ · · · +

(
n
d

)
dimensions, corresponding

to the monomials in a sign-representation of f . As a result, a class of functions of

threshold degree at most d can be learned in the standard PAC model under arbitrary

distributions in time polynomial in
(
n
0

)
+
(
n
1

)
+ · · · +

(
n
d

)
. Klivans and Servedio [78]

used this threshold degree approach to give what is currently the fastest algorithm
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for learning polynomial-size DNF formulas, with running time exp(Õ(n1/3)). Another

learning-theoretic breakthrough based on threshold degree is the fastest algorithm for

learning Boolean formulas, obtained by O’Donnell and Servedio [97] for formulas of

constant depth and by Ambainis et al. [9] for arbitrary depth. Their algorithm runs

in time exp(Õ(n(2k−1−1)/(2k−1))) for formulas of size n and constant depth k, and in

time exp(Õ(
√
n)) for formulas of unbounded depth. In both cases, the bound on the

running time follows from the corresponding upper bound on the threshold degree.

A far-reaching generalization of threshold degree is the matrix-analytic notion of sign-

rank, which allows sign-representation out of arbitrary low-dimensional subspaces

rather than the subspace of low-degree polynomials. The contribution of this chapter

is to prove essentially optimal lower bounds on the threshold degree and sign-rank of

AC0, which in turn imply lower bounds on other fundamental complexity measures

of interest in communication complexity and learning theory. In the remainder of this

section, we give a detailed overview of the previous work, present our main results,

and discuss our proofs.

Depth Threshold degree Reference

2 Ω(n1/3) Minsky and Papert [90]
2 O(n1/3 log n) Klivans and Servedio [78]

k Ω(n1/3 log
2(k−2)

3 n) O’Donnell and Servedio [97]

k Ω(n
k−1
2k−1 ) Sherstov [122]

4 Ω(
√
n) Sherstov [124]

3 Ω̃(
√
n) Bun and Thaler [39]

k Ω̃(n
k−1
k+1 ) This work

Table 1. Known bounds on the maximum threshold degree of ∧,∨,¬-
circuits of polynomial size and constant depth. In all bounds, n denotes
the number of variables, and k denotes an arbitrary positive integer.
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5.1.1. Threshold degree of AC0. Determining the maximum threshold de-

gree of an AC0 circuit in n variables is a longstanding open problem in the area.

It is motivated by the algorithmic and complexity-theoretic applications discussed

above [78, 97, 79, 106, 35], in addition to being a natural question in its own right.

Table 1 gives a quantitative summary of the results obtained to date. In their seminal

monograph, Minsky and Papert [90] proved a lower bound of Ω(n1/3) on the threshold

degree of the following DNF formula in n variables:

f(x) =
n1/3∧
i=1

n2/3∨
j=1

xi,j.

Three decades later, Klivans and Servedio [78] obtained an O(n1/3 log n) upper bound

on the threshold degree of any polynomial-size DNF formula in n variables, essen-

tially matching Minsky and Papert’s result and resolving the problem for depth 2.

Determining the threshold degree of circuits of depth k ≥ 3 proved to be challenging.

The only upper bound known to date is the trivial O(n), which follows directly from

the definition of threshold degree. In particular, it is consistent with our knowledge

that there are AC0 circuits with linear threshold degree. On the lower bounds side,

the only progress for a long time was due to O’Donnell and Servedio [97], who con-

structed circuits of depth k with threshold degree Ω(n1/3 log2(k−2)/3 n). The authors

of [97] formally posed the problem of obtaining a polynomial improvement on Min-

sky and Papert’s lower bound. Such an improvement was obtained in [122], with

a threshold degree lower bound of Ω(n(k−1)/(2k−1)) for circuits of depth k. A polyno-

mially stronger result was obtained in [124], with a lower bound of Ω(
√
n) on the

threshold degree of an explicit circuit of depth 4. Bun and Thaler [39] recently used

a different, depth-3 circuit to give a much simpler proof of an Ω̃(
√
n) lower bound

for AC0. We obtain a quadratically stronger, and near-optimal, lower bound on the

threshold degree of AC0.
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Theorem 5.1. Let k ≥ 1 be a fixed integer. Then there is an (explicitly given)

Boolean circuit family {fn}∞n=1, where fn : {0, 1}n → {0, 1} has polynomial size, depth

k, and threshold degree

deg±(fn) = Ω
(
n
k−1
k+1 · (log n)−

1
k+1
d k−2

2
eb k−2

2
c
)
.

Moreover, fn has bottom fan-in O(log n) for all k 6= 2.

For large k, Theorem 5.1 essentially matches the trivial upper bound of n on the

threshold degree of any function. For any fixed depth k, Theorem 5.1 subsumes all

previous lower bounds on the threshold degree of AC0, with a polynomial improve-

ment starting at depth k = 4. In particular, the lower bounds due to Minsky and

Papert [90] and Bun and Thaler [39] are subsumed as the special cases k = 2 and

k = 3, respectively. From a computational learning perspective, Theorem 5.1 defini-

tively rules out the threshold degree approach to learning constant-depth circuits.

5.1.2. Sign-rank of AC0. The sign-rank of a matrix A = [Aij] without zero

entries is the least rank of a real matrix M = [Mij] with sgnMij = sgnAij for

Depth Sign-rank Reference

3 exp(Ω(n1/3)) Razborov and Sherstov [106]
3 exp(Ω(n2/5)) Bun and Thaler [37]
7 exp(Ω̃(

√
n)) Bun and Thaler [39]

3k exp(Ω̃(n1− 1
k+1 )) This work

3k + 1 exp(Ω̃(n1− 1
k+1.5 )) This work

Table 2. Known lower bounds on the maximum sign-rank of ∧,∨,¬-
circuits of polynomial size and constant depth. In all bounds, n denotes
the number of variables, and k denotes an arbitrary positive integer.
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all i, j. In other words, the sign-rank of A is the minimum rank of a matrix that

can be obtained by making arbitrary sign-preserving changes to the entries of A.

The sign-rank of a Boolean function F : {0, 1}n × {0, 1}n → {0, 1} is defined in the

natural way as the sign-rank of the matrix [(−1)F (x,y)]x,y. In particular, the sign-rank

of F is an integer between 1 and 2n. This fundamental notion has been studied in

contexts as diverse as matrix analysis, communication complexity, circuit complexity,

and learning theory [101, 7, 17, 53, 54, 78, 88, 113, 117, 106, 37, 39]. To a

complexity theorist, sign-rank is a vastly more challenging quantity to analyze than

threshold degree. Indeed, a sign-rank lower bound rules out a sign-representation out

of every linear subspace of given dimension, whereas a threshold degree lower bound

rules out a sign-representation specifically by linear combinations of monomials up to

a given degree.

Unsurprisingly, progress in understanding sign-rank has been slow and difficult. No

nontrivial lower bounds were available for any explicit matrices until the breakthrough

work of Forster [53], who proved strong lower bounds on the sign-rank of Hadamard

matrices and more generally all sign matrices with small spectral norm. The sign-rank

of constant-depth circuits F : {0, 1}n × {0, 1}n → {0, 1} has since seen considerable

work, as summarized in Table 2. The first exponential lower bound on the sign-rank

of anAC0 circuit was obtained by Razborov and Sherstov [106], solving a 22-year-old

problem due to Babai, Frankl, and Simon [11]. The authors of [106] constructed a

polynomial-size circuit of depth 3 with sign-rank exp(Ω(n1/3)). In follow-up work,

Bun and Thaler [37] constructed a polynomial-size circuit of depth 3 with sign-

rank exp(Ω̃(n2/5)). A more recent and incomparable result, also due to Bun and

Thaler [39], is a sign-rank lower bound of exp(Ω̃(
√
n)) for a circuit of polynomial

size and depth 7. No nontrivial upper bounds are known on the sign-rank of AC0.

Closing this gap between the best lower bound of exp(Ω̃(
√
n)) and the trivial upper
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bound of 2n has been a challenging open problem. We solve this problem almost

completely, by constructing for any ε > 0 a constant-depth circuit with sign-rank

exp(Ω(n1−ε)). In quantitative detail, our results on the sign-rank of AC0 are the

following two theorems.

Theorem 5.2. Let k ≥ 1 be a given integer. Then there is an (explicitly given)

Boolean circuit family {Fn}∞n=1, where Fn : {0, 1}n × {0, 1}n → {0, 1} has polynomial

size, depth 3k, and sign-rank

rk±(Fn) = exp
(

Ω
(
n1− 1

k+1 · (log n)−
k(k−1)
2(k+1)

))
.

As a companion result, we prove the following qualitatively similar but quantitatively

incomparable theorem.

Theorem 5.3. Let k ≥ 1 be a given integer. Then there is an (explicitly given)

Boolean circuit family {Gn}∞n=1, where Gn : {0, 1}n×{0, 1}n → {0, 1} has polynomial

size, depth 3k + 1, and sign-rank

rk±(Gn) = exp
(

Ω
(
n1− 1

k+1.5 · (log n)−
k2

2k+3

))
.

For large k, the lower bounds of Theorems 5.2 and 5.3 approach the trivial upper

bound of 2n on the sign-rank of any Boolean function {0, 1}n × {0, 1}n → {0, 1}.

For any fixed depth k, Theorems 5.2 and 5.3 subsume all previous lower bounds

on the sign-rank of AC0, with a strict improvement starting at depth 3. From a

computational learning perspective, Theorems 5.2 and 5.3 state that AC0 has near-

maximum dimension complexity [113, 115, 106, 39], namely, exp(Ω(n1−ε)) for any

constant ε > 0. This rules out the possibility of learning AC0 circuits via dimension

complexity [106], a far-reaching generalization of the threshold degree approach from

the monomial basis to arbitrary bases.
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5.1.3. Communication complexity. Theorems 5.1–5.3 imply strong new lower

bounds on the communication complexity of AC0. To begin with, combining Theo-

rem 5.1 with the pattern matrix method [114, 116] gives:

Theorem 5.4. Let k ≥ 3 be a fixed integer. Then there is an (explicitly given)

Boolean circuit family {Fn}∞n=1, where Fn : {0, 1}n × {0, 1}n → {0, 1} has polynomial

size, depth k, communication complexity

PP(Fn) = Ω
(
n
k−1
k+1 · (log n)−

1
k+1
d k−2

2
eb k−2

2
c
)

and discrepancy

disc(Fn) = exp
(
−Ω

(
n
k−1
k+1 · (log n)−

1
k+1
d k−2

2
eb k−2

2
c
))

.

Discrepancy is a combinatorial complexity measure of interest in communication

complexity theory and other research areas; see Section 3.2.2 for a formal defini-

tion. As k grows, the bounds of Theorem 5.4 approach the best possible bounds for

any communication problem F : {0, 1}n × {0, 1}n → {0, 1}. The same qualitative be-

havior was achieved in previous work by Bun and Thaler [39], who constructed,

for any constant ε > 0, a constant-depth circuit Fn : {0, 1}n × {0, 1}n → {0, 1}

with communication complexity PP(F ) = Ω(n1−ε) and discrepancy disc(F ) =

exp(−Ω(n1−ε)). Theorem 5.4 strictly subsumes the result of Bun and Thaler [39]

and all other prior work on the discrepancy and PP-complexity of constant-depth

circuits [114, 116, 14, 125, 123]. For any fixed depth k ≥ 4, the bounds of Theo-

rem 5.4 are a polynomial improvement in n over all previous work. We further obtain

a counterpart of Theorem 5.4 for number-on-the-forehead model, the strongest formal-

ism of multiparty communication. This result, presented in detail in Section 5.4.5,

uses the multiparty version [123] of the pattern matrix method.
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Our work also gives near-optimal lower bounds for AC0 in the much more powerful

unbounded-error model. Specifically, it is well-known [101] that the unbounded-error

communication complexity of any Boolean function F : X × Y → {0, 1} coincides

up to an additive constant with the logarithm of the sign-rank of F. As a result,

Theorems 5.2 and 5.3 imply:

Theorem 5.5. Let k ≥ 1 be a given integer. Let {Fn}∞n=1 and {Gn}∞n=1 be the

polynomial-size circuit families of depth 3k and 3k + 1, respectively, constructed in

Theorems 5.2 and 5.3. Then

UPP(Fn) = Ω
(
n1− 1

k+1 · (log n)−
k(k−1)
2(k+1)

)
,

UPP(Gn) = Ω
(
n1− 1

k+1.5 · (log n)−
k2

2k+3

)
.

For large k, the lower bounds of Theorem 5.5 essentially match the trivial upper

bound of n + 1 on the unbounded-error communication complexity of any function

F : {0, 1}n×{0, 1}n → {0, 1}. Theorem 5.5 strictly subsumes all previous work on the

unbounded-error communication complexity of AC0, with a polynomial improvement

for any depth k ≥ 3. The best lower bound on the unbounded-error communication

complexity of AC0 prior to our work was Ω̃(
√
n) for a circuit of depth 7, due to Bun

and Thaler [39]. Finally, we remark that Theorem 5.5 gives essentially the strongest

possible separation of the communication complexity classes PH and UPP. We refer

the reader to the work of Babai et al. [11] for definitions and detailed background on

these classes.

Qualitatively, Theorem 5.5 is stronger than Theorem 5.4 because communication pro-

tocols with unbounded error are significantly more powerful than those with weakly

unbounded error. On the other hand, Theorem 5.4 is stronger quantitatively for
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any fixed depth k and has the additional advantage of generalizing to the multiparty

setting.

5.1.4. Threshold weight and threshold density. By well-known reductions,

Theorem 5.1 implies a number of other lower bounds for the representation of AC0

circuits by polynomials. For the sake of completeness, we mention two such conse-

quences. The threshold density of a Boolean function f : {0, 1}n → {0, 1}, denoted

dns(f), is the minimum size of a set family S ⊆ P({1, 2, . . . , n}) such that

sgn

(∑
S∈S

λS(−1)
∑
i∈S xi

)
≡ (−1)f(x)

for some reals λS. A related complexity measure is threshold weight, denoted W (f)

and defined as the minimum sum
∑

S⊆{1,2,...,n} |λS| over all integers λS such that

sgn

 ∑
S⊆{1,2,...,n}

λS(−1)
∑
i∈S xi

 ≡ (−1)f(x).

It is not hard to see that the threshold density and threshold weight of f correspond

to the minimum size of a threshold-of-parity and majority-of-parity circuit for f, re-

spectively. The definitions imply that dns(f) ≤ W (f) for every f, and a little more

thought reveals that 1 ≤ dns(f) ≤ 2n and 1 ≤ W (f) ≤ (2
√

2)n. These complex-

ity measures have seen extensive work, motivated by applications to computational

learning and circuit complexity. For a bibliographic overview, we refer the reader

to [122, Section 8.2].

Krause and Pudlák [81, Proposition 2.1] gave an ingenious method for transforming

threshold degree lower bounds into lower bounds on threshold density and thus also

threshold weight. Specifically, let f : {0, 1}n → {0, 1} be a Boolean function of inter-

est. The authors of [81] considered the related function F : ({0, 1}n)3 → {0, 1} given

by F (x, y, z) = f(. . . , (zi ∧ xi) ∨ (zi ∧ yi), . . . ), and proved that dns(F ) ≥ 2deg±(f). In
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this light, Theorem 5.1 implies that the threshold density of AC0 is exp(Ω(n1−ε)) for

any constant ε > 0.

Corollary 5.6. Let k ≥ 3 be a fixed integer. Then there is an (explicitly given)

Boolean circuit family {Fn}∞n=1, where Fn : {0, 1}n → {0, 1} has polynomial size and

depth k and satisfies

W (Fn) ≥ dns(Fn)

= exp
(

Ω
(
n
k−1
k+1 · (log n)−

1
k+1
d k−2

2
eb k−2

2
c
))

.

Observe that the circuit family {Fn}∞n=1 of Corollary 5.6 has the same depth as the

circuit family {fn}∞n=1 of Theorem 5.1. This is because fn has bottom fan-in O(log n),

and thus the Krause-Pudlák transformation fn 7→ Fn can be “absorbed” into the

bottom two levels of fn. Corollary 5.6 subsumes all previous lower bounds [81,

35, 122, 124, 39] on the threshold weight and density of AC0, with a polynomial

improvement for every k ≥ 4. The improvement is particularly noteworthy in the case

of threshold density, where the best previous lower bound [124, 39] was exp(Ω(
√
n)).

5.1.5. Previous approaches. In the remainder of this section, we discuss our

proofs of Theorems 5.1–5.3. The notation that we use here is standard, and we defer

its formal review to Section 5.2. We start with necessary approximation-theoretic

background, then review relevant previous work, and finally contrast it with the

approach of this paper. To sidestep minor technicalities, we will represent Boolean

functions in this overview as mappings {−1, 1}n → {−1, 1}. We alert the reader

that we will revert to the standard {0, 1}n → {0, 1} representation starting with

Section 5.2.

Background. Recall that our results concern the sign-representation of Boolean

functions and matrices. To properly set the stage for our proofs, however, we need to
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consider the more general notion of pointwise approximation [93]. Let f : {−1, 1}n →

{−1, 1} be a Boolean function of interest. The ε-approximate degree of f, denoted

degε(f), is the minimum degree of a real polynomial that approximates f within ε

pointwise: degε(f) = min{deg p : ‖f − p‖∞ ≤ ε}. The regimes of most interest are

bounded-error approximation, corresponding to constants ε ∈ (0, 1); and large-error

approximation, corresponding to ε = 1−o(1). In the former case, the choice of the error

parameter ε ∈ (0, 1) is immaterial and affects the approximate degree of a Boolean

function by at most a multiplicative constant. It is clear that pointwise approximation

is a stronger requirement than sign-representation, and thus deg±(f) ≤ degε(f) for

all 0 ≤ ε < 1. A moment’s thought reveals that threshold degree is in fact the limiting

case of ε-approximate degree as the error parameter approaches 1:

deg±(f) = lim
ε↗1

degε(f). (5.1.1)

Both approximate degree and threshold degree have dual characterizations [116],

obtained by appeal to linear programming duality. Specifically, degε(f) ≥ d if and

only if there is a function φ : {−1, 1}n → R with the following two properties: 〈φ, f〉 >

ε‖φ‖1; and 〈φ, p〉 = 0 for every polynomial of degree less than d. Rephrasing, φ must

have large correlation with f but zero correlation with every low-degree polynomial.

By weak linear programming duality, φ constitutes a proof that degε(f) ≥ d and for

that reason is said to witness the lower bound degε(f) ≥ d. In view of (5.1.1), this

discussion carries over to the case of threshold degree. The dual characterization here

states that deg±(f) ≥ d if and only if there is a nonzero function φ : {−1, 1}n → R

with the following two properties: φ(x)f(x) ≥ 0 for all x; and 〈φ, p〉 = 0 for every

polynomial of degree less than d. In this dual characterization, φ agrees in sign
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with f and is additionally orthogonal to polynomials of degree less than d. The sign-

agreement property can be restated in terms of correlation, as 〈φ, f〉 = ‖φ‖1. As

before, φ is called a threshold degree witness for f.

What distinguishes the dual characterizations of approximate degree and threshold

degree is how the dual object φ relates to f . Specifically, a threshold degree witness

must agree in sign with f at every point. An approximate degree witness, on the

other hand, need only exhibit such sign-agreement with f at most points, in that the

points where the sign of φ is correct should account for most of the `1 norm of φ. As

a result, constructing dual objects for threshold degree is significantly more difficult

than for approximate degree. This difficulty is to be expected because because the gap

between threshold degree and approximate degree can be arbitrary, e.g., 1 versus Θ(n)

for the majority function on n bits [99].

Hardness amplification via block-composition. Much of the recent work on approx-

imate degree and threshold degree is concerned with composing functions in ways

that amplify their hardness. Of particular significance here is block-composition,

defined for functions f : {−1, 1}n → {−1, 1} and g : X → {−1, 1} as the Boolean

function f ◦ g : Xn → {−1, 1} given by (f ◦ g)(x1, . . . , xn) = f(g(x1), . . . , g(xn)).

Block-composition works particularly well for threshold degree. To use an already fa-

miliar example, the block-composition ANDn1/3 ◦ORn2/3 has threshold degree Ω(n1/3)

whereas the constituent functions ANDn1/3 and ORn2/3 have threshold degree 1. As

a more extreme example, Sherstov [121] obtained a lower bound of Ω(n) on the

threshold degree of the conjunction h1∧h2 of two halfspaces h1, h2 : {0, 1}n → {0, 1},

each of which by definition has threshold degree 1. The fact that threshold degree

can increase spectacularly under block-composition was the basis of much previous

work, including the best previous lower bounds [122, 124] on the threshold degree

of AC0. Apart from threshold degree, block-composition has yielded strong results
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for approximate degree in various error regimes, including direct sum theorems [119]

and direct product theorems [118] for approximate degree and error amplification for

approximate degree [118, 35, 136, 36].

How, then, does one prove lower bounds on the threshold degree or approximate de-

gree of a composed function f ◦g? It is here that the dual characterizations take center

stage: they make it possible to prove lower bounds algorithmically, by constructing

the corresponding dual object φ for the function of interest. Such algorithmic proofs

run the gamut in terms of technical sophistication, from straightforward to lengthy

and highly technical, but they have some structure in common. In most cases, one

starts by obtaining dual objects φ and ψ for the constituent functions f and g, re-

spectively, either by direct construction or by appeal to linear programming duality.

They are then combined to yield a dual object Φ for the composed function, using

dual block-composition [119, 85]:

Φ(x1, x2, . . . , xn) = φ(sgnψ(x1), . . . , sgnψ(xn))
n∏
i=1

|ψ(xi)|. (5.1.2)

This composed dual object often requires additional work to ensure sign-agreement or

correlation with the composed Boolean function. Among the generic tools available

to assist in this process is a “corrector” object ζ due to Razborov and Sherstov [106],

with the following four properties: (i) ζ is orthogonal to low-degree polynomials; (ii) ζ

takes on 1 at a prescribed point of the hypercube; (iii) ζ is bounded on inputs of low

Hamming weight; and (iv) ζ vanishes on all other points of the hypercube. Using the

Razborov–Sherstov object, suitably shifted and scaled, one can surgically correct the

behavior of a given dual object Φ on a substantial fraction of inputs, thus modifying

its metric properties without affecting its orthogonality to low-degree polynomials.

This technique has played an important role in recent work, e.g., [37, 38, 33, 39].
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Hardness amplification for approximate degree. While block-composition has pro-

duced a treasure trove of results on the polynomial representation of Boolean func-

tions, it is of limited use when it comes to constructing functions with high bounded-

error approximate degree. To illustrate the issue, consider arbitrary functions

f : {−1, 1}n1 → {−1, 1} and g : {−1, 1}n2 → {−1, 1} with 1/3-approximate degrees

nα1
1 and nα2

2 , respectively, for some 0 < α1 < 1 and 0 < α2 < 1. It is well-known [120]

that the composed function f ◦ g on n1n2 variables has 1/3-approximate degree

O(nα1
1 n

α2
2 ) = O(n1n2)max{α1,α2}. This means that relative to the new number of vari-

ables, the block-composed function f ◦ g is no harder to approximate to bounded

error than either of the constituent functions f and g. In particular, one cannot use

block-composition to transform functions on n bits with 1/3-approximate degree at

most nα into functions on N ≥ n bits with 1/3-approximate degree ω(Nα).

Until recently, the best lower bound on the bounded-error approximate degree of

AC0 was Ω(n2/3), due to Aaronson and Shi [5]. Breaking this n2/3 barrier was a

fundamental problem in its own right, in addition to being a hard prerequisite for any

future threshold degree lower bounds for AC0 better than Ω(n2/3). This barrier was

overcome in a brilliant paper of Bun and Thaler [38], who proved, for any constant

ε > 0, an Ω(n1−ε) lower bound on the 1/3-approximate degree of AC0. In more

detail, let f : {−1, 1}n → {−1, 1} be a function of interest, with 1/3-approximate

degree nα for some 0 ≤ α < 1. Bun and Thaler consider the block-composition

F = f ◦ ANDΘ(logm) ◦ ORm, for an appropriate parameter m = poly(n). As shown

in earlier work [119, 35] on approximate degree, dual block-composition witnesses

the lower bound deg1/3(F ) = Ω(deg1/3(ORm) deg1/3(f)) = Ω(
√
m deg1/3(f)). Here,

Bun and Thaler make the crucial observation that the dual object for ORm has most

of its `1 mass on inputs of Hamming weight O(1), which in view of (5.1.2) implies

that the dual object for F places most of it `1 mass on inputs of Hamming weight
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O(n log n). The authors of [38] then use the Razborov–Sherstov corrector object to

transfer the small amount of `1 mass that the dual object for F places on inputs of

high Hamming weight, to inputs of low Hamming weight. The resulting dual object

for F is supported entirely on inputs of low Hamming weight and therefore witnesses a

lower bound on the 1/3-approximate degree of the restriction F ′ of F to inputs of low

Hamming weight. By re-encoding the input to F ′, one finally obtains a function F ′′

on n(log n)O(1) variables with 1/3-approximate degree polynomially larger than that

of f. This passage from f to F ′′ is the desired hardness amplification for approximate

degree. We find it helpful to think of Bun and Thaler’s technique as block-composition

followed by input compression, to reduce the number of input variables in the block-

composed function. To obtain an Ω(n1−ε) lower bound on the approximate degree of

AC0, the authors of [38] start with a trivial circuit and iteratively apply the hardness

amplification step a constant number of times, until approximate degree Ω(n1−ε) is

reached.

In follow-up work, Bun, Kothari, and Thaler [33] refined the technique of [38] by

deriving optimal concentration bounds for the dual object for ORm. They thereby

obtained tight lower bounds on the 1/3-approximate degree of surjectivity, element

distinctness, and other important problems. The most recent contribution to this

line of work is due to Bun and Thaler [39], who prove an Ω(n1−ε) lower bound on

the (1 − 2−n
1−ε

)-approximate degree of AC0 by combining the method of [38] with

Sherstov’s work [118] on direct product theorems for approximate degree. This new

result substantially strengthens the authors’ previous result [38] on the bounded-error

approximate degree of AC0 but falls short of a threshold degree lower bound.

5.1.6. Our approach.
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Threshold degree of AC 0. Bun and Thaler [39] refer to obtaining an Ω(n1−ε)

threshold degree lower bound for AC0 as the “main glaring open question left by

our work.” It is important to note here that lower bounds on approximate degree,

even with the error parameter exponentially close to 1 as in [39], have no implica-

tions for threshold degree. For example, there are functions [121] with (1− 2−Θ(n))-

approximate degree Θ(n) but threshold degree 1. Our proof of Theorem 5.1 is unre-

lated to the most recent work of Bun and Thaler [39] on the large-error approximate

degree of AC0 and instead builds on the earlier and simpler “block-composition fol-

lowed by input compression” approach of [38]. The centerpiece of our proof is a hard-

ness amplification result for threshold degree, whereby any function f with threshold

degree nα for a constant 0 ≤ α < 1 is transformed efficiently and within AC0 into a

function F with polynomially larger threshold degree.

In more detail, let f : {−1, 1}n → {−1, 1} be a function of interest, with threshold

degree nα. We consider the block-composition f ◦ MPm, where m = nO(1) is an

appropriate parameter and MPm = ANDm ◦ ORm2 is the Minsky–Papert function

with threshold degree Ω(m). We construct the dual object for MPm from scratch to

ensure concentration on inputs of Hamming weight Õ(m). By applying dual block-

composition to the threshold degree witnesses of f and MPm, we obtain a dual object

Φ witnessing the Ω(mnα) threshold degree of f ◦ MPm. So far in the proof, our

differences from [38] are as follows: (i) since our goal is amplification of threshold

degree, we work with witnesses of threshold degree rather than approximate degree;

(ii) to ensure rapid growth of threshold degree, we use block-composition with inner

function MPm = ANDm ◦ ORm2 of threshold degree Θ(m), in place of Bun and

Thaler’s inner function ANDΘ(logm) ◦ORm of threshold degree Θ(logm).

Since the dual object for MPm by construction has most of its `1 norm on inputs of

Hamming weight Õ(m), the dual object Φ for the composed function has most of its
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`1 norm on inputs of Hamming weight Õ(nm). Analogous to [38, 33, 39], we would

like to use the Razborov–Sherstov corrector object to remove the `1 mass that Φ has

on inputs on high Hamming weight, transferring it to inputs of low Hamming weight.

This brings us to the novel and technically demanding part of our proof. Previous

works [38, 33, 39] transferred the `1 mass from inputs of high Hamming weight to

the neighborhood of the all-zeroes input (0, 0, . . . , 0). An unavoidable downside of the

Razborov–Sherstov transfer process is that it amplifies the `1 mass being transferred.

When the transferred mass finally reaches its destination, it overwhelms Φ’s original

values at various points, destroying Φ’s sign-agreement with the composed function

f ◦MPm. It is this difficulty that prevented earlier works [38, 33, 39] from obtaining

a strong threshold degree lower bound for AC0.

We proceed differently. Instead of transferring the `1 mass of Φ from inputs of high

Hamming weight to the neighborhood of (0, 0, . . . , 0), we transfer it simultaneously

to exponentially many neighborhoods of inputs with low Hamming weight. Split

this way across many neighborhoods, the transferred mass does not overpower the

original values of Φ and in particular does not change any signs. Working out the

details of this transfer scheme requires subtle calculations; it is in fact surprising that

such a scheme exists. Once the transfer process is complete, we obtain a witness for

the Ω(mnα) threshold degree of f ◦MPm even for the restriction of the domain to

inputs of low Hamming weight. Compressing the input as in [38, 33], we obtain an

amplification theorem for threshold degree. With this work behind us, the proof of

Theorem 5.1 for any depth k amounts to starting with a trivial circuit and amplifying

its threshold degree O(k) times.

Sign-rank of AC 0. It is not known how to transform a threshold degree lower

bound in a black-box manner into a sign-rank lower bound. In particular, Theo-

rem 5.1 has no implications a priori for the sign-rank of AC0. Instead, our proofs
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of Theorems 5.2 and 5.3 are based on a stronger approximation-theoretic quantity

that we call γ-smooth threshold degree. Formally, the γ-smooth threshold degree of

a Boolean function f : X → {−1, 1} is the largest d for which there is a nonzero

function φ : X → R with the following two properties: φ(x)f(x) ≥ γ · ‖φ‖1/|X| for

all x ∈ X; and 〈φ, p〉 = 0 for every polynomial of degree less than d. Taking γ = 0

in this formalism, one recovers the standard dual characterization of the threshold

degree of f. In particular, threshold degree is synonymous with 0-smooth threshold

degree. The general case of γ-smooth threshold degree for γ > 0 requires threshold

degree witnesses φ that are min-smooth, in that the absolute value of φ at any given

point is at least a γ fraction of the average absolute value of φ over all points.

The substantial advantage of smooth threshold degree is that it has immediate sign-

rank implications. Specifically, any lower bound of d on the 2−O(d)-smooth threshold

degree can be transformed efficiently and in a black-box manner into a sign-rank

lower bound of 2Ω(d), using a combination of the pattern matrix method [114, 116]

and Forster’s spectral lower bound on sign-rank [53, 54]. Accordingly, we obtain

Theorems 5.2 and 5.3 by proving an Ω(n1−ε) lower bound on the 2−n
1−ε-smooth

threshold degree of AC0, for any constant ε > 0. At the core of this result is an

amplification theorem for smooth threshold degree, whose repeated application makes

it possible to prove arbitrarily strong lower bounds for AC0. Amplifying smooth

threshold degree is a complex juggling act due to the presence of two parameters—

degree and smoothness—that must evolve in coordinated fashion. The approach of

Theorem 5.1 is not useful here because the threshold degree witnesses that arise from

the proof of Theorem 5.1 are highly nonsmooth.

When amplifying the threshold degree of a function f as in the proof of Theo-

rem 5.1, two phenomena adversely affect the smoothness parameter. The first is

block-composition itself as a composition technique, which in the regime of interest
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to us transforms every threshold degree witness for f into a hopelessly nonsmooth

witness for the composed function. The other culprit is the input compression step,

which re-encodes the input and thereby affects the smoothness in ways that are hard

to control. To overcome these difficulties, we develop a novel approach unrelated to

our proof of Theorem 5.1.

Central to our work is an analytic property that we call local smoothness. Formally, let

Φ: Nn → R be a function of interest. For a subset X ⊆ Nn and a real number K ≥ 1,

we say that Φ is K-smooth on X if |Φ(x)| ≤ K |x−x
′||Φ(x′)| for all x, x′ ∈ X. Put

another way, for any two points of X at `1 distance d, the corresponding values of Φ

differ in magnitude by a factor of at mostKd. In and of itself, a locally smooth function

Φ need not be min-smooth because for a pair of points that are far from each other,

the corresponding Φ-values can differ by many orders of magnitude. However, locally

smooth functions exhibit extraordinary plasticity. Specifically, we show how to modify

a locally smooth function’s metric properties—such as its support or the distribution

of its `1 mass—without the change being detectable by low-degree polynomials. This

apparatus makes it possible to restore min-smoothness to the dual object Φ that

results from the block-composition step and preserve that min-smoothness throughout

the input compression step, eliminating the two obstacles to min-smoothness in the

earlier proof of Theorem 5.1. The block-composition step here uses a locally smooth

witness for the threshold degree of MPm, which needs to be built from scratch and is

quite different from the witness in the proof of Theorem 5.1.

Our described approach is quite different from previous work on the sign-rank of

constant-depth circuits [106, 37, 39]. The analytic notion in those earlier papers is

weaker than γ-smooth threshold degree and in particular allows the dual object to be

arbitrary on a γ fraction of the inputs. This weaker property is acceptable when the

main result is proved in one shot, with a closed-form construction of the dual object.
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By contrast, we must construct dual objects iteratively, with each iteration increasing

the degree parameter and proportionately decreasing the smoothness parameter. This

iterative process requires that the dual object in each iteration be min-smooth on the

entire domain. Perhaps unexpectedly, we find γ-smooth threshold degree easier to

work with than the weaker notion in previous work [106, 37, 39]. In particular,

we are able to give a new and short proof of the exp(Ω(n1/3)) lower bound on the

sign-rank of AC0, originally obtained by Razborov and Sherstov [106] with a much

more complicated approach. The new proof can be found in Section 5.5.1, where it

serves as a prelude to our main result on the sign-rank of AC0.

5.2. Preliminaries

5.2.1. Products. For a set X, we let RX denote the linear space of real-valued

functions on X. The tensor product of f ∈ RX and g ∈ RY is denoted f ⊗ g ∈ RX×Y

and given by (f ⊗ g)(x, y) = f(x)g(y). The tensor product f ⊗ f ⊗ · · · ⊗ f (n times)

is abbreviated f⊗n. For a subset S ⊆ {1, 2, . . . , n} and a function f : X → R, we

define f⊗S : Xn → R by f⊗S(x1, x2, . . . , xn) =
∏

i∈S f(xi). As extremal cases, we have

f⊗∅ ≡ 1 and f⊗{1,2,...,n} = f⊗n. Tensor product notation generalizes naturally to sets

of functions: F ⊗ G = {f ⊗ g : f ∈ F, g ∈ G} and F⊗n = {f1 ⊗ f2 ⊗ · · · ⊗ fn :

f1, f2, . . . , fn ∈ F}. A conical combination of f1, f2, . . . , fk ∈ RX is any function of

the form λ1f1 + λ2f2 + · · · + λkfk, where λ1, λ2, . . . , λk are nonnegative reals. A

convex combination of f1, f2, . . . , fk ∈ RX is any function λ1f1 + λ2f2 + · · · + λkfk,

where λ1, λ2, . . . , λk are nonnegative reals that sum to 1. The conical hull of F ⊆ RX ,

denoted coneF, is the set of all conical combinations of functions in F. The convex

hull, denoted convF , is defined analogously as the set of all convex combinations of
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functions in F. For any set of functions F ⊆ RX , we have

(convF )⊗n ⊆ conv(F⊗n). (5.2.1)

Throughout this manuscript, we view probability distributions as real functions. This

convention makes available the shorthands introduced above. In particular, for prob-

ability distributions µ and λ, the symbol suppµ denotes the support of µ, and µ⊗ λ

denotes the probability distribution given by (µ⊗λ)(x, y) = µ(x)λ(y). If µ is a prob-

ability distribution on X, we consider µ to be defined also on any superset of X with

the understanding that µ = 0 outside X.We let D(X) denote the family of all finitely

supported probability distributions on X. Most of this chapter is concerned with the

distribution family D(Nn) and its subfamilies, each of which we denote with a Fraktur

letter. For any sets X ⊆ Nn and W ⊆ R, we define

X|W = {x ∈ X : |x| ∈ W}.

In the case of a one-element set W = {w}, we further shorten X|{w} to X|w. To

illustrate, Nn|≤w denotes the set of vectors whose components are natural numbers

and sum to at most w, whereas {0, 1}n|w denotes the set of Boolean strings of length

n and Hamming weight exactly w. For a function f : X → R on a subset X ⊆ Nn, we

let f |W denote the restriction of f to X|W . A typical use of this notation would be

f |≤w for some real number w.

5.2.2. Orthogonal content. For a multivariate real polynomial p : Rn → R, we

let deg p denote the total degree of p, i.e., the largest degree of any monomial of p.

We use the terms degree and total degree interchangeably in this chapter. It will be

convenient to define the degree of the zero polynomial by deg 0 = −∞. For a real-

valued function φ supported on a finite subset of Rn, we define the orthogonal content

of φ, denoted orthφ, to be the minimum degree of a real polynomial p for which
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〈φ, p〉 6= 0. We adopt the convention that orthφ =∞ if no such polynomial exists. It

is clear that orthφ ∈ N∪{∞}, with the extremal cases orthφ = 0 ⇔ 〈φ, 1〉 6= 0 and

orthφ =∞ ⇔ φ = 0. This gives us a simpler definition of the threshold degree and

the smooth threshold degree for any f : {0, 1}n → R, in view of Equation (2.6.1)-

(2.6.2),

deg±(f) = max
µ∈D(X)

orth((−1)f · µ),

deg±(f, γ) = max
µ∈D(X):

µ≥γ/|X| on X

orth((−1)f · µ).

Our next three results record additional facts about orthogonal content.

Proposition 5.7. Let X and Y be nonempty finite subsets of Euclidean space. Then:

(i) orth(φ+ ψ) ≥ min{orthφ, orthψ} for all φ, ψ : X → R;

(ii) orth(φ⊗ ψ) = orth(φ) + orth(ψ) for all φ : X → R and ψ : Y → R;

(iii) orth(φ⊗n − ψ⊗n) ≥ orth(φ− ψ) for all φ, ψ : X → R and all n ≥ 1.

Proof. Item (i) is immediate, as is the upper bound in (ii). For the lower bound

in (ii), simply note that the linearity of inner product makes it possible to restrict

attention to factored polynomials p(x)q(y), where p and q are polynomials on X and

Y , respectively. For (iii), use a telescoping sum to write

φ⊗n − ψ⊗n =
n−1∑
i=0

(φ⊗(n−i) ⊗ ψ⊗i − φ⊗(n−i−1) ⊗ ψ⊗(i+1))

=
n−1∑
i=0

φ⊗(n−i−1) ⊗ (φ− ψ)⊗ ψ⊗i.

By (ii), each term in the final expression has orthogonal content at least orth(φ−ψ).

By (i), then, the sum has orthogonal content at least orth(φ− ψ) as well. �
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Proposition 5.8. Let φ0, φ1 : X → R be given functions on a finite subset X of Eu-

clidean space. Then for every polynomial p : Xn → R, the mapping z 7→ 〈
⊗n

i=1 φzi , p〉

is a polynomial on {0, 1}n of degree at most (deg p)/ orth(φ1 − φ0).

Proof. We may assume that orth(φ1 − φ0) > 0 since the proposition holds trivially

otherwise. By linearity, it suffices to consider factored polynomials p(x1, . . . , xn) =∏n
i=1 pi(xi), where each pi is a nonzero polynomial on X. In this setting, we have〈

n⊗
i=1

φzi , p

〉
=

n∏
i=1

〈φzi , pi〉 . (5.2.2)

By definition, 〈φ0, pi〉 = 〈φ1, pi〉 for any index i with deg pi < orth(φ1 − φ0). As a

result, such indices do not contribute to the degree of the right-hand side of (5.2.2) as

a function of z. The contribution of any other index to the degree is clearly at most 1.

Summarizing, the right-hand side of (5.2.2) is a polynomial in z ∈ {0, 1}n of degree

at most |{i : deg pi ≥ orth(φ1 − φ0)}| ≤ (deg p)/ orth(φ1 − φ0). �

Corollary 5.9. Let X be a finite subset of Euclidean space. Then for any functions

φ0, φ1 : X → R and ψ : {0, 1}n → R,

orth

 ∑
z∈{0,1}n

ψ(z)
n⊗
i=1

φzi

 ≥ orth(ψ) · orth(φ1 − φ0).

Proof. We may assume that orth(ψ) · orth(φ1−φ0) > 0 since the claim holds trivially

otherwise. Fix a polynomial any polynomial P of degree less than orth(ψ) · orth(φ1−

φ0). The linearity of inner product leads to〈 ∑
z∈{0,1}n

ψ(z)
n⊗
i=1

φzi , P

〉
=

∑
z∈{0,1}n

ψ(z)

〈
n⊗
i=1

φzi , P

〉
.

By Proposition 5.8, the right-hand side is the inner product of ψ with a polynomial

of degree less than orthψ and is therefore zero. �
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Observe that Corollary 5.9 gives an alternate proof of Proposition 5.7(iii). Our next

proposition uses orthogonal content to give a useful criterion for a real-valued function

to be a probability distribution.

Proposition 5.10. Let Λ be a probability distribution on a finite subset X of Eu-

clidean space. Let Λ̃ : X → R be given with Λ̃ ≥ 0 and orth(Λ− Λ̃) > 0. Then Λ̃ is a

probability distribution on X.

Proof. By hypothesis, Λ̃ is a nonnegative function. Moreover, ‖Λ̃‖1 = 〈Λ̃, 1〉 =

〈Λ, 1〉 − 〈Λ− Λ̃, 1〉 = 〈Λ, 1〉 = 1, where the third step uses orth(Λ− Λ̃) > 0. �

Consider the real vector space of functions {0, 1}n → R. The linear subspace of real

polynomials on {0, 1}n of degree at most d is easily seen to be span{χS : |S| ≤ d}. Its

orthogonal complement, span{χS : |S| > d}, is then the linear subspace of functions

that have zero inner product with every polynomial of degree at most d. As a result,

the orthogonal content of a nonzero function φ : {0, 1}n → R is given by

orthφ = min{|S| : φ̂(S) 6= 0}, φ 6≡ 0. (5.2.3)

5.2.3. Symmetrization. Let Sn denote the symmetric group on n elements.

For a permutation σ ∈ Sn and an arbitrary sequence x = (x1, x2, . . . , xn), we adopt

the shorthand σx = (xσ(1), xσ(2), . . . , xσ(n)). A function f(x1, x2, . . . , xn) is called sym-

metric if it is invariant under permutation of the input variables: f(x1, x2, . . . , xn) =

f(xσ(1), xσ(2), . . . , xσ(n)) for all x and σ. Symmetric functions on {0, 1}n are intimately

related to univariate polynomials, as was first observed by Minsky and Papert in their

symmetrization argument [90].
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Proposition 5.11 (Minsky and Papert). Let p : Rn → R be a given polynomial.

Then the mapping

t 7→ E
x∈{0,1}n|t

p(x)

is a univariate polynomial on {0, 1, 2, . . . , n} of degree at most deg p.

Minsky and Papert’s result generalizes to block-symmetric functions:

Proposition 5.12. Let n1, . . . , nk be positive integers. Let p : Rn1 × · · · × Rnk → R

be a given polynomial. Then the mapping

(t1, t2, . . . , tk) 7→ E
x1∈{0,1}n1 |t1

E
x2∈{0,1}n2 |t2

· · · E
xk∈{0,1}nk |tk

p(x1, x2, . . . , xk)

is a polynomial on {0, 1, . . . , n1} × {0, 1, . . . , n2} × · · · × {0, 1, . . . , nk} of degree at

most deg p.

Proposition 5.12 follows in a straightforward manner from Proposition 5.11 by induc-

tion on the number of blocks k, as pointed out in [106, Proposition 2.3]. The next

result is yet another generalization of Minsky and Papert’s symmetrization technique,

this time to the setting when x1, x2, . . . , xn are vectors rather than bits.

Proposition 5.13. Let p : (Rm)n → R be a polynomial of degree d. Then there is

a polynomial p∗ : Rn → R of degree at most d such that for all x1, x2, . . . , xn ∈

{e1, e2, . . . , em, 0
m},

E
σ∈Sn

p(xσ(1), xσ(2), . . . , xσ(n)) = p∗(x1 + x2 + · · ·+ xn).

Proof. We closely follow an argument due to Ambainis [8, Lemma 3.4], who proved

a related result. Since the components of x1, x2, . . . , xn are Boolean-valued, we have

xi,j = x2
i,j = x3

i,j = · · · and therefore we may assume that p is multilinear. By
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linearity, it further suffices to consider the case when p is a single monomial:

p(x1, x2, . . . , xn) =
m∏
j=1

∏
i∈Sj

xi,j (5.2.4)

for some sets S1, S2, . . . , Sm ⊆ {1, 2, . . . , n} with
∑m

j=1 |Sj| ≤ d. If some pair of sets

Sj, Sj′ with j 6= j′ have nonempty intersection, then the right-hand side of (5.2.4)

contains a product of the form xi,jxi,j′ for some i and thus p ≡ 0 on the domain in

question. As a result, the proposition holds with p∗ = 0. In the complementary case

when S1, S2, . . . , Sm are pairwise disjoint, we calculate

E
σ∈Sn

p(xσ(1), xσ(2), . . . , xσ(n))

=
m∏
j=1

E
σ∈Sn

∏
i∈Sj

xσ(i),j

∣∣∣∣∣∣
∏
i∈Sj′

xσ(i),j′ = 1 for all j′ < j


=

m∏
j=1

(
x1,j + x2,j + · · ·+ xn,j

|Sj|

)(
n− |S1| − |S2| − · · · − |Sj−1|

|Sj|

)−1

.

Expanding out the binomial coefficients shows that the final expression is anm-variate

polynomial whose argument is the vector sum x1 + x2 + · · · + xn ∈ Rm. Moreover,

the degree of this polynomial is
∑
|Sj| ≤ d. �

Corollary 5.14. Let p : (Rm)n → R be a polynomial of degree d. Then the mapping

v 7→ E
x∈{0m,e1,e2,...,em}n:
x1+x2+···+xn=v

p (5.2.5)

is a polynomial on Nm|≤n of degree at most deg p.

Minsky and Papert’s symmetrization corresponds to m = 1 in Corollary 5.14.
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Proof of Corollary 5.14. Let v ∈ Nm|≤n be given. Then all representations v = x1 +

x2 + · · · + xn with x1, x2, . . . , xn ∈ {0m, e1, e2, . . . , em} are the same up to the order

of the summands. As a result, (5.2.5) is the same mapping as

v 7→ E
σ∈Sn

p(σ(e1, . . . , e1︸ ︷︷ ︸
v1

, e2, . . . , e2︸ ︷︷ ︸
v2

, . . . , em, . . . , em︸ ︷︷ ︸
vm

, 0m, 0m . . . , 0m︸ ︷︷ ︸
n−v1−···−vm

)),

which by Proposition 5.13 is a polynomial in

e1 + · · ·+ e1︸ ︷︷ ︸
v1

+ e2 + · · ·+ e2︸ ︷︷ ︸
v2

+ · · ·+ em + · · ·+ em︸ ︷︷ ︸
vm

+ 0m + · · ·+ 0m︸ ︷︷ ︸
n−v1−···−vm

= v

of degree at most deg p. �

Analogous to symmetrized polynomials, it will be also helplful to work with sym-

metrized versions of Boolean functions. We define AND∗n,OR∗n : {0, 1, 2, . . . , n} →

{0, 1} by

AND∗n(t) =

1 if t = n,

0 otherwise,
OR∗n(t) =

0 if t = 0,

1 otherwise.

The symmetrized variant of the Minsky–Papert function is MP∗m,r = ANDm ◦OR∗r.

5.3. Auxiliary results

In this section, we collect a number of supporting results on approximate degree

that have appeared in one form or another in previous work. For the reader’s con-

venience, we provide self-contained proofs whenever the precise formulation that we

need departs from published work.

5.3.1. Basic dual objects. As described in the introduction, we prove our main

results constructively, by building explicit dual objects that witness the corresponding
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lower bounds. An important tool in this process is the following lemma due to

Razborov and Sherstov [106]. Informally, it is used to adjust a dual object’s metric

properties while preserving its orthogonality to low-degree polynomials. The lemma

plays a basic role in several recent papers [106, 38, 33] as well as our work.

Lemma 5.15 (Razborov and Sherstov). Fix integers d and n, where 0 ≤ d < n. Then

there is an (explicitly given) function ζ : {0, 1}n → R such that

supp ζ ⊆ {0, 1}n|≤d ∪ {1n},

ζ(1n) = 1,

‖ζ‖1 ≤ 1 + 2d
(
n

d

)
,

orth ζ > d.

In more detail, this result corresponds to taking k = d and ζ = (−1)ng in the proof of

Lemma 3.2 of [106]. We will need the following symmetrized version of Lemma 5.15.

Lemma 5.16. Fix a point u ∈ Nn and a natural number d < |u|. Then there is

ζu : Nn → R such that

supp ζu ⊆ {u} ∪ {v ∈ Nn : v ≤ u and |v| ≤ d}, (5.3.1)

ζu(u) = 1, (5.3.2)

‖ζu‖1 ≤ 1 + 2d
(
|u|
d

)
, (5.3.3)

orth ζu > d. (5.3.4)
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Proof. Lemma 5.15 gives a function ζ : {0, 1}|u| → R such that

supp ζ ⊆ {0, 1}|u||≤d ∪ {1|u|}, (5.3.5)

ζ(1|u|) = 1, (5.3.6)

‖ζ‖1 ≤ 1 + 2d
(
|u|
d

)
, (5.3.7)

orth ζ > d. (5.3.8)

Now define ζu : Nn → R by

ζu(v) =
∑

x1∈{0,1}|u1|||v1|

· · ·
∑

xn∈{0,1}|un|||vn|

ζ(x1 . . . xn).

Then (5.3.1)–(5.3.3) are immediate from (5.3.5)–(5.3.7), respectively. To verify the

remaining property (5.3.4), fix a polynomial p : Rn → R of degree at most d. Then

〈ζu, p〉 =
∑
v:v≤u

 ∑
x1∈{0,1}|u1|||v1|

· · ·
∑

xn∈{0,1}|un|||vn|

ζ(x1 . . . xn)

 p(v1, . . . , vn)

=
∑
v:v≤u

 ∑
x1∈{0,1}|u1|||v1|

· · ·
∑

xn∈{0,1}|un|||vn|

ζ(x1 . . . xn)p(|x1|, . . . , |xn|)


=

∑
x1∈{0,1}|u1|

· · ·
∑

xn∈{0,1}|un|
ζ(x1 . . . xn)p(|x1|, . . . , |xn|)

= 0,

where the last step uses (5.3.8). �

When constructing a dual polynomial for a complicated constant-depth circuit, it

is natural to start with a dual polynomial for the OR function or, equivalently, its

counterpart AND. The first such dual polynomial was constructed by Špalek [137],
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with many refinements and generalizations [34, 122, 124, 38, 33] obtained in follow-

up work. We augment this line of work with yet another construction, which delivers

the exact combination of analytic and metric properties that we need.

Theorem 5.17. Let 0 < ε < 1 be given. Then for some constants c′, c′′ ∈ (0, 1) and

all integers N ≥ n ≥ 1, there is an (explicitly given) function ψ : {0, 1, 2, . . . , N} → R

such that

ψ(0) >
1− ε

2
,

‖ψ‖1 = 1,

orthψ ≥ c′
√
n,

sgnψ(t) = (−1)t, t = 0, 1, 2, . . . , N,

|ψ(t)| ∈
[

c′

(t+ 1)2 2c′′t/
√
n
,

1

c′(t+ 1)2 2c′′t/
√
n

]
, t = 0, 1, 2, . . . , N.

A self-contained proof of Theorem 5.17 is available in Appendix 5.6.

5.3.2. Dominant components. We now recall a lemma due to Bun and

Thaler [38] that serves to identify the dominant components of a vector. Its primary

use [38, 33] is to prove concentration-of-measure results for product distributions on

Nn.

Lemma 5.18 (Bun and Thaler). Let v ∈ Rn be given, v 6= 0n. Then there is S ⊆

{1, 2, . . . , n} such that

|S| ≥ ‖v‖1

2‖v‖∞
,

|S|min
i∈S
|vi| ≥

‖v‖1

2(1 + lnn)
.
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Proof (adapted from [38]). By renumbering the indices if necessary, we may assume

that |v1| ≥ |v2| ≥ · · · ≥ |vn| ≥ 0. For the sake of contradiction, suppose that no such

set S exists. Then

|vi| <
1

i
· ‖v‖1

2(1 + lnn)

for every index i ≥ ‖v‖1
2‖v‖∞ . As a result,

‖v‖1 =
∑

i<
‖v‖1

2‖v‖∞

|vi|+
n∑

i=
⌈
‖v‖1

2‖v‖∞

⌉ |vi|

≤
∑

i<
‖v‖1

2‖v‖∞

‖v‖∞ +
n∑

i=
⌈
‖v‖1

2‖v‖∞

⌉
1

i
· ‖v‖1

2(1 + lnn)

<
‖v‖1

2
+

‖v‖1

2(1 + lnn)

n∑
i=1

1

i

≤ ‖v‖1,

where the final step uses

n∑
i=1

1

i
= 1 +

n∑
i=2

1

i
≤ 1 +

∫ n

1

di

i
= 1 + lnn.

We have arrived at ‖v‖1 < ‖v‖1, a contradiction. �

We will need a slightly more general statement, which can be thought of as an extremal

analogue of Lemma 5.18.
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Lemma 5.19. Fix θ > 0 and let v ∈ Rn be an arbitrary vector with ‖v‖1 ≥ θ. Then

there is S ⊆ {1, 2, . . . , n} such that

|S| ≥ ‖v‖1

2‖v‖∞
, (5.3.9)

min
i∈S
|vi| ≥

1

|S|
· θ

2(1 + lnn)
, (5.3.10)∑

i/∈S

|vi| < θ. (5.3.11)

Proof. Fix n, v, and θ for the remainder of the proof. We will refer to a subset

S ⊆ {1, 2, . . . , n} as regular if S satisfies (5.3.9) and (5.3.10). Lemma 5.18 along with

‖v‖1 ≥ θ ensures the existence of at least one regular set. Now, let S be a maximal

regular set. For the sake of contradiction, suppose that (5.3.11) fails. Applying

Lemma 5.18 to v|S produces a nonempty set T ⊆ S with

min
i∈T
|vi| ≥

1

|T |
· θ

2(1 + lnn)
.

But then S ∪ T is regular, contradicting the maximality of S. �

Lemmas 5.18 and 5.19 imply the following concentration-of-measure result for product

distributions on Nn, due to Bun and Thaler [38].

Lemma 5.20 (Bun and Thaler). Let λ1, λ2, . . . , λn ∈ D(N) be given with

λi(t) ≤
Cαt

(t+ 1)2
, t ∈ N, (5.3.12)

where C ≥ 0 and 0 ≤ α ≤ 1. Then for all θ ≥ 8Cen(1 + lnn),

P
v∼λ1×λ2×···×λn

[‖v‖1 ≥ θ] ≤ αθ/2.

Proof (adapted from [38]). For a nonempty subset S ⊆ {1, 2, . . . , n} and a vector

v ∈ Nn, we say that v is S-heavy if the following conditions are simultaneously
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satisfied:

|vi| ≥
1

|S|
· θ

4(1 + lnn)
, i ∈ S, (5.3.13)

∑
i∈S

|vi| >
θ

2
. (5.3.14)

Now, consider a random vector v ∈ Nn distributed according to λ1 × λ2 × · · · × λn.

We have

P
v

[‖v‖1 ≥ θ] ≤ P
v

[v is S-heavy for some nonempty S 6= ∅]

≤
∑

S⊆{1,2,...,n}
S 6=∅

P
v

[v is S-heavy]

≤
∑

S⊆{1,2,...,n}
S 6=∅

αθ/2

 ∑
t≥ 1
|S| ·

θ
4(1+lnn)

C

(t+ 1)2


|S|

≤
∑

S⊆{1,2,...,n}
S 6=∅

αθ/2

(
C

∫ ∞
1
|S| ·

θ
4(1+lnn)

dt

t2

)|S|

=
∑

S⊆{1,2,...,n}
S 6=∅

αθ/2
(
C|S| · 4(1 + lnn)

θ

)|S|

=
n∑
s=1

(
n

s

)
· αθ/2

(
Cs · 4(1 + lnn)

θ

)s
≤

n∑
s=1

αθ/2
(
en

s
· Cs · 4(1 + lnn)

θ

)s
≤ αθ/2,

where the first inequality holds by Lemma 5.19; the second step applies the union

bound; the third step uses 0 ≤ α ≤ 1 and the upper bound (5.3.12) for the λi; and the

last two steps use (2.1.1) and the hypothesis that θ ≥ 8Cen(1+lnn), respectively. �
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5.3.3. Input transformation. We work almost exclusively with Boolean func-

tions on Nn|≤θ, where the dimension parameter n is polynomially larger than the Ham-

ming weight parameter θ. This choice of domain is admittedly unusual but greatly

simplifies the analysis. Fortunately, approximation-theoretic results obtained in this

setting carry over in a blackbox manner to the hypercube. In more detail, we will now

prove that every function on Nn|≤θ can be transformed into a function on O(θ log n)

Boolean variables with similar approximation-theoretic properties. Analogous input

transformations, with similar proofs, have been used in previous work to translate re-

sults from {0, 1}n|θ or {0, 1}n|≤θ to the hypercube setting [38, 33]. The presentation

below seems more economical than previous treatments.

Recall that e1, e2, . . . , en denote the standard basis for Rn. The following encoding

lemma was proved in [124, Lemma 3.1].

Lemma 5.21 (Sherstov). Let n ≥ 1 be a given integer. Then there is a surjection

g : {0, 1}6dlog(n+1)e → {0n, e1, e2, . . . , en} such that

E
g−1(0n)

p = E
g−1(e1)

p = E
g−1(e2)

p = · · · = E
g−1(en)

p

for every polynomial p of degree at most dlog(n+ 1)e. Moreover, g can be constructed

deterministically in time polynomial in n.

Observe that the points 0n, e1, e2, . . . , en in this lemma act simply as labels and can be

replaced with any other tuple of n+1 distinct points. Indeed, this result was originally

stated in [124] for a different choice of points. A tensor version of Lemma 5.21 is as

follows.

Lemma 5.22. Let g : {0, 1}6dlog(n+1)e → {0n, e1, e2, . . . , en} be as constructed in

Lemma 5.21. Then for any integer θ ≥ 1 and for any polynomial p : (R6dlog(n+1)e)θ →
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R, the mapping

(y1, y2, . . . , yθ) 7→ E
g−1(y1)×g−1(y2)×···×g−1(yθ)

p

is a polynomial in y ∈ {0n, e1, e2, . . . , en}θ of degree at most (deg p)/dlog(n+ 1) + 1e.

Proof. By linearity, it suffices to prove consider factored polynomials of the form

p(x1, x2, . . . , xθ) = p1(x1)p2(x2) · · · pθ(xθ), where p1, p2, . . . , pθ are real polynomials on

{0, 1}6dlog(n+1)e. For such a polynomial, the defining equation simplifies to

E
g−1(y1)×g−1(y2)×···×g−1(yθ)

p =
n∏
i=1

E
g−1(yi)

pi. (5.3.15)

We now examine the individual contributions of p1, p2, . . . , pθ to the degree of the

right-hand side as a real polynomial in y. For any polynomial pi of degree at most

dlog(n + 1)e, Lemma 5.21 ensures that the corresponding expectation Eg−1(yi) pi is

a constant independent of the input yi. Thus, polynomials pi of degree at most

dlog(n+1)e do not contribute to the degree of the right-hand side of (5.3.15). For the

other polynomials pi, the expectation Eg−1(yi) pi is a linear polynomial in yi, namely,

E
g−1(yi)

pi = yi,1 E
g−1(e1)

pi + yi,2 E
g−1(e2)

pi + · · ·+ yi,n E
g−1(en)

pi

+

(
1−

n∑
j=1

yi,j

)
E

g−1(0n)
pi,

where we are crucially exploiting the fact that yi ∈ {0n, e1, e2, . . . , en}. Thus, polyno-

mials pi of degree greater than dlog(n+ 1)e contribute at most 1 each to the degree.

Summarizing, the right-hand side of (5.3.15) is a real polynomial in y1, y2, . . . , yθ of

degree at most

|{i : deg pi ≥ dlog(n+ 1)e+ 1}| ≤ deg p

dlog(n+ 1)e+ 1
. �
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We have reached the claimed result on input transformation.

Theorem 5.23. Let n, θ ≥ 1 be given integers. Set N = 6dlog(n + 1)eθ. There is a

surjection G : {0, 1}N → Nn|≤θ such that:

(i) for every polynomial p : RN → R, the mapping v 7→ EG−1(v) p is a polynomial

on Nn|≤θ of degree at most (deg p)/dlog(n+ 1) + 1e;

(ii) for every coordinate i = 1, 2, . . . , n, the mapping x 7→ OR∗θ(G(x)i) is com-

putable by an explicitly given DNF formula with O(θn6) terms, each with at

most 6dlog(n+ 1)e variables.

Applying Theorem 5.23 to a function f : Nn|≤θ → {0, 1} produces a composed func-

tion f ◦G : {0, 1}6dlog(n+1)eθ → {0, 1} in the hypercube setting. The theorem ensures

that lower bounds for the pointwise approximation, or sign-representation, of f apply

to f ◦ G as well. Moreover, the circuit complexity of f ◦ G is only slightly higher

than that of f. This way, Theorem 5.23 efficiently transfers approximation-theoretic

results from Nn|≤θ (or any subset thereof, such as {0, 1}n|≤θ or Nn|θ) to the traditional

setting of the hypercube.

Proof of Theorem 5.23. Define G : ({0, 1}6dlog(n+1)e)θ → Nn|≤θ by

G(x1, x2, . . . , xθ) = g(x1) + g(x2) + · · ·+ g(xθ),

where g : {0, 1}6dlog(n+1)e → {0n, e1, e2, . . . , en} is as constructed in Lemma 5.21. The

surjectivity of G follows trivially from that of g. We proceed to verify the additional

properties required of G.

(i) For v ∈ Nn|≤θ, we have the partition

G−1(v) =
⋃

y∈{0n,e1,e2,...,en}θ:
y1+y2+···+yθ=v

g−1(y1)× g−1(y2)× · · · × g−1(yθ). (5.3.16)
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All representations v = y1+y2+· · ·+yθ with y1, y2, . . . , yθ ∈ {0n, e1, e2, . . . , en} are the

same up to the order of the summands. As a result, each part g−1(y1)×g−1(y2)×· · ·×

g−1(yθ) in the partition on the right-hand side of (5.3.16) has the same cardinality.

We conclude that for any given polynomial p,

E
G−1(v)

p = E
y∈{0n,e1,e2,...,en}θ:
y1+y2+···+yθ=v

E
g−1(y1)×g−1(y2)×···×g−1(yθ)

p. (5.3.17)

Recall from Lemma 5.22 that the rightmost expectation in this equation is a polyno-

mial in y1, y2, . . . , yθ ∈ {0n, e1, e2, . . . , en} of degree at most (deg p)/dlog(n+ 1) + 1e.

As a result, Corollary 5.14 implies that the right-hand side of (5.3.17) is a polynomial

in v of degree at most (deg p)/dlog(n+ 1) + 1e.

(ii) Fix an index i. Then

OR∗θ(G(x)i) =
θ∨
j=1

I[g(xj) = ei].

Each of the disjuncts on the right-hand side is a function of 6dlog(n + 1)e Boolean

variables. Therefore, OR∗θ(G(x)i) is representable by a DNF formula with O(θn6)

terms, each with at most 6dlog(n+ 1)e variables. �

5.4. The threshold degree of AC0

This section is devoted to our results on threshold degree. While we are mainly inter-

ested in the threshold degree of AC0, the techniques developed here apply to a much

broader class of functions. Specifically, we prove an amplification theorem that takes

an arbitrary function f and builds from it a function F with higher threshold degree.

We give analogous amplification theorems for various other approximation-theoretic

quantities. The transformation f 7→ F is efficient with regard to circuit depth and

size and in particular preserves membership in AC0. To deduce our main results for
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AC0, we start with a single-gate circuit and iteratively apply the amplification the-

orem to produce constant-depth circuits of higher and higher threshold degree. We

develop this general machinery in Sections 5.4.1–5.4.3, followed by the application to

AC0 in Section 5.4.5.

5.4.1. Shifting probability mass in product distributions. Consider a

product distribution Λ on Nn whereby every component is concentrated near 0. The

centerpiece of our work, presented here, is the construction of an associated proba-

bility distribution Λ̃ that is supported entirely on inputs of low weight and cannot be

distinguished from Λ by a low-degree polynomial. More formally, define B(r, c, α) to

be the family of probability distributions λ on N such that

suppλ = {0, 1, 2, . . . , r′}

for some nonnegative integer r′ ≤ r, and in addition

ct+1

(t+ 1)2 2αt
≤ λ(t) ≤ 1

c(t+ 1)2 2αt
, t ∈ suppλ. (5.4.1)

Distributions in this family are subject to pointwise constraints, hence the symbol B

for “bounded.” Our choice of bounding functions is motivated mainly by the metric

properties of the dual polynomial for ORn, constructed in Theorem 5.17.

In this notation, our analysis handles any distribution Λ ∈ B(r, c, α)⊗n. It would be

possible to generalize our work further, but the lower and upper bounds in (5.4.1)

are already exponentially far apart and capture a much larger class of probability

distributions than what we need for the applications to AC0. The precise statement

of our result is as follows.
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Theorem 5.24. Let Λ ∈ B(r, c, α)⊗n be given, for some integer r ≥ 0 and reals c > 0

and α ≥ 0. Let d and θ be positive integers with

θ ≥ 2d, (5.4.2)

θ ≥ 4en(1 + lnn)

c2
. (5.4.3)

Then there is a function Λ̃ : Nn → R such that

supp Λ̃ ⊆ (supp Λ)|<2θ, (5.4.4)

orth(Λ− Λ̃) > d, (5.4.5)

|Λ− Λ̃| ≤
(

8nr

c

)d
2−dθ/re−αdθ/2e+2 Λ on supp Λ̃. (5.4.6)

In general, the function Λ̃ constructed in Theorem 5.24 may not be a probability

distribution. However, when θ is large enough relative to the other parameters,

the pointwise property (5.4.6) forces |Λ − Λ̃| ≤ Λ and in particular Λ̃ ≥ 0. Since

orth(Λ− Λ̃) > 0 by construction, Proposition 5.10 guarantees that Λ̃ is a probability

distribution in that case.

Proof of Theorem 5.24. For c > 1, we have B(r, c, α) = ∅ and the theorem holds

vacuously. Another degenerate possibility is r = 0, in which case Λ is the single-point

distribution on 0n, and therefore it suffices to take Λ̃ = Λ. In what follows, we treat

the general case when

c ∈ (0, 1],

r ≥ 1.
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For every vector v ∈ Nn with ‖v‖1 ≥ θ, let S(v) ⊆ {1, 2, . . . , n} denote the corre-

sponding subset identified by Lemma 5.19. To restate the lemma’s guarantees,

|S(v)| ≥ θ

r
, v ∈ (supp Λ)|≥2θ, (5.4.7)

min
i∈S(v)

vi ≥
θ

2|S(v)|(1 + lnn)
, v ∈ (supp Λ)|≥2θ, (5.4.8)

‖v|S(v)‖1 < θ. v ∈ (supp Λ)|≥2θ. (5.4.9)

Property (5.4.9) implies that

‖v|S(v)‖1 > θ, v ∈ (supp Λ)|≥2θ, (5.4.10)

and in particular

‖v|S(v)‖1 > d, v ∈ (supp Λ)|≥2θ. (5.4.11)

For each i = 1, 2, . . . , n and each u ∈ Ni|>d, Lemma 5.16 gives a function ζu : Ni → R

such that

supp ζu ⊆ {u} ∪ {v ∈ Ni : v ≤ u and |v| ≤ d}, (5.4.12)

ζu(u) = 1, (5.4.13)

‖ζu‖1 ≤ 1 + 2d
(
‖u‖1

d

)
, (5.4.14)

orth ζu > d, (5.4.15)

and in particular

‖ζu‖∞ ≤ max{|ζu(u)|, ‖ζu‖1 − |ζu(u)|}

≤ 2d
(
‖u‖1

d

)
≤ 2‖u‖1

d. (5.4.16)
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The central object of study in our proof is the following function ζ : Nn → R, built

from the auxiliary objects S(v) and ζu just introduced:

ζ(x) =
∑

v∈(supp Λ)|≥2θ

Λ(v) ζv|S(v)(x|S(v)) I[x|S(v) = v|S(v)]. (5.4.17)

The expression on the right-hand side is well-formed because, to restate (5.4.11), each

string v|S(v) has weight greater than d and can therefore be used as a subscript in

ζv|S(v) . Specializing (5.4.15) and (5.4.16),

orth ζv|S(v) > d, v ∈ (supp Λ)|≥2θ, (5.4.18)

‖ζv|S(v)‖∞ ≤ 2(nr)d, v ∈ (supp Λ)|≥2θ. (5.4.19)

Property (5.4.12) ensures that ζv|S(v)(x|S(v)) I[x|S(v) = v|S(v)] 6= 0 only when x ≤ v. It

follows that

supp ζ ⊆
⋃

v∈supp Λ

{x ∈ Nn : x ≤ v}

= supp Λ, (5.4.20)

where second step is valid because Λ ∈ B(r, c, α)⊗n.
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Before carrying on with the proof, we take a moment to simplify the defining expres-

sion for ζ. For any v ∈ Nn|≥2θ, we have

ζv|S(v)(x|S(v)) I[x|S(v) = v|S(v)]

= ζv|S(v)(x|S(v)) I[x|S(v) = v|S(v) or ‖x|S(v)‖1 ≤ d] I[x|S(v) = v|S(v)]

= ζv|S(v)(x|S(v))(I[x|S(v) = v|S(v)] + I[‖x|S(v)‖1 ≤ d])I[x|S(v) = v|S(v)]

= ζv|S(v)(x|S(v))I[x = v]

+ ζv|S(v)(x|S(v))I[‖x|S(v)‖1 ≤ d] I[x|S(v) = v|S(v)]

= I[x = v] + ζv|S(v)(x|S(v))I[‖x|S(v)‖1 ≤ d] I[x|S(v) = v|S(v)],

where the first, second, and fourth steps are valid by (5.4.12), (5.4.11), and (5.4.13),

respectively. Making this substitution in the defining equation for ζ,

ζ(x) =
∑

v∈(supp Λ)|≥2θ

Λ(v)ζv|S(v)(x|S(v))I[‖x|S(v)‖1 ≤ d] I[x|S(v) = v|S(v)]

+
∑

v∈(supp Λ)|≥2θ

Λ(v)I[x = v]. (5.4.21)

We proceed to establish key properties of ζ.

Step 1: Orthogonality. By Proposition 5.7(ii), each term in the summation on

the right-hand side of (5.4.17) is a function orthogonal to polynomials of degree less

than orth ζv|S(v) . Therefore,

orth ζ ≥ min
v∈(supp Λ)|≥2θ

orth ζv|S(v)

> d, (5.4.22)

where the first step uses Proposition 5.7(i) and the second step applies (5.4.18).
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Step 2: Heavy inputs. We now examine the behavior of ζ on inputs of weight at

least 2θ, which we think of as “heavy.” For any string v ∈ (supp Λ)|≥2θ, we have

x ∈ Nn|≥2θ =⇒ ‖x‖1 > d+ θ

=⇒ ‖x|S(v)‖1 > d ∨ ‖x|S(v)‖1 > θ

=⇒ ‖x|S(v)‖1 > d ∨ x|S(v) 6= v|S(v),

where the final implication uses (5.4.9). We conclude that the first summation

in (5.4.21) vanishes on Nn|≥2θ, so that

ζ(x) = Λ(x), x ∈ Nn|≥2θ. (5.4.23)

This completes the analysis of heavy inputs.
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Step 3: Light inputs. We now turn to inputs of weight less than 2θ, the most

technical part of the proof. Fix an arbitrary string x ∈ (supp Λ)|<2θ. Then

|ζ(x)|
Λ(x)

=

∣∣∣∣∣∣
∑

v∈(supp Λ)|≥2θ

Λ(v)

Λ(x)
ζv|S(v)(x|S(v)) I[‖x|S(v)‖1 ≤ d] I[x|S(v) = v|S(v)]

∣∣∣∣∣∣
≤

∑
v∈(supp Λ)|≥2θ

Λ(v)

Λ(x)
|ζv|S(v)(x|S(v))| I[‖x|S(v)‖1 ≤ d] I[x|S(v) = v|S(v)]

≤ 2(nr)d
∑

v∈(supp Λ)|≥2θ

Λ(v)

Λ(x)
I[‖x|S(v)‖1 ≤ d] I[x|S(v) = v|S(v)]

= 2(nr)d
∑

S⊆{1,...,n}:
|S|≥θ/r

I[‖x|S‖1 ≤ d]
∑

v∈(supp Λ)|≥2θ:
S(v)=S

Λ(v)

Λ(x)
I[x|S = v|S]

≤ 2(nr)d
∑

S⊆{1,...,n}:
|S|≥θ/r

I[‖x|S‖1 ≤ d]
∑
v∈Nn:∑
i∈S vi≥θ,

mini∈S vi≥ θ
2|S|(1+lnn)

Λ(v)

Λ(x)
I[x|S = v|S],

(5.4.24)

where the first step uses (5.4.21); the second step applies the triangle inequality; the

third step is valid by (5.4.19); the fourth step amounts to collecting terms according

to S(v), which by (5.4.7) has cardinality at least θ/r; and the fifth step uses (5.4.8)

and (5.4.10).
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Bounding (5.4.24) requires a bit of work. To start with, write Λ =
⊗n

i=1 λi for some

λ1, λ2, . . . , λn ∈ B(r, c, α). Then for every nonempty set S ⊆ {1, 2, . . . , n},

I[‖x|S‖1 ≤ d]
∏
i∈S

λi(xi) ≥ I[‖x|S‖1 ≤ d]
∏
i∈S

cxi+1

(xi + 1)2 2αxi

= I[‖x|S‖1 ≤ d] c|S|
( c

2α

)∑
i∈S xi∏

i∈S

1

(xi + 1)2

≥ I[‖x|S‖1 ≤ d] c|S|
( c

2α

)∑
i∈S xi

(
|S|∑

i∈S(xi + 1)

)2|S|

≥ c|S|
( c

2α

)d( |S|
|S|+ d

)2|S|

≥ c|S|
( c

2αe2

)d
, (5.4.25)

where the first step applies the definition of B(r, c, α); the third step is valid by the

arithmetic-geometric mean inequality; and the last step uses the bound 1 + t ≤ et for
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real t. Continuing,∑
v∈Nn:∑
i∈S vi≥θ,

mini∈S vi≥ θ
2|S|(1+lnn)

Λ(v)

Λ(x)
I[x|S = v|S]

=
∑
v∈Nn:∑
i∈S vi≥θ,

mini∈S vi≥ θ
2|S|(1+lnn)

,

vi=xi for i/∈S

∏
i∈S

λi(vi)

λi(xi)

≤
∑
v∈Nn:∑
i∈S vi≥θ,

mini∈S vi≥ θ
2|S|(1+lnn)

,

vi=xi for i/∈S

2−α
∑
i∈S vi

∏
i∈S

1

c(vi + 1)2λi(xi)

≤
∑
v∈Nn:

mini∈S vi≥ θ
2|S|(1+lnn)

,

vi=xi for i/∈S

2−αθ
∏
i∈S

1

c(vi + 1)2λi(xi)

= 2−αθ

 ∞∑
t=d θ

2|S|(1+lnn)e

1

c(t+ 1)2


|S|∏

i∈S

1

λi(xi)

≤ 2−αθ

(∫ ∞
d θ

2|S|(1+lnn)e
dt

ct2

)|S|∏
i∈S

1

λi(xi)

≤ 2−αθ
(

2|S|(1 + lnn)

cθ

)|S|∏
i∈S

1

λi(xi)
, (5.4.26)

where the first step uses Λ =
⊗n

i=1 λi, and the second step applies the definition of

B(r, c, α).
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It remains to put together the bounds obtained so far. We have:

|ζ(x)|
Λ(x)

≤ 2(nr)d
∑

S⊆{1,...,n}:
|S|≥θ/r

I[‖x|S‖1 ≤ d] · 2−αθ
(

2|S|(1 + lnn)

cθ

)|S|∏
i∈S

1

λi(xi)

≤ 2(nr)d
∑

S⊆{1,...,n}:
|S|≥θ/r

2−αθ
(

2|S|(1 + lnn)

c2θ

)|S|
·
(

2αe2

c

)d

≤ 2 · (e2nr/c)d

2αdθ/2e

∑
S⊆{1,...,n}:
|S|≥θ/r

(
2|S|(1 + lnn)

c2θ

)|S|

= 2 · (e2nr/c)d

2αdθ/2e

∞∑
s=dθ/re

(
n

s

)(
2s(1 + lnn)

c2θ

)s

≤ 2 · (e2nr/c)d

2αdθ/2e

∞∑
s=dθ/re

(
en

s
· 2s(1 + lnn)

c2θ

)s

≤ 2 · (e2nr/c)d

2αdθ/2e

∞∑
s=dθ/re

2−s

= 4 · (e2nr/c)d

2αdθ/2e+dθ/re
,

where the first step follows from (5.4.24) and (5.4.26); the second step substitutes the

bound from (5.4.25); the third step uses (5.4.2); and the next-to-last step uses (5.4.3).

In summary, we have shown that

|ζ(x)| ≤ 4 · (e2nr/c)d

2αdθ/2e+dθ/re
Λ(x), x ∈ (supp Λ)|<2θ. (5.4.27)

Step 4: Finishing the proof. Define Λ̃ = Λ − ζ. Then the support prop-

erty (5.4.4) follows from (5.4.20) and (5.4.23); the analytic indistinguishability

property (5.4.5) follows from (5.4.22); and the pointwise property (5.4.6) follows

from (5.4.4) and (5.4.27). �
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We record a generalization of Theorem 5.24 to translates of probability distributions

in B(r, c, α)⊗n, and further to convex combinations of such distributions. Formally,

define B(r, c, α,∆) for ∆ ≥ 0 to be the family of probability distributions λ on N

such that λ(t) ≡ λ′(t− a) for some λ′ ∈ B(r, c, α) and a ∈ [0,∆]. We have:

Corollary 5.25. Let Λ ∈ conv(B(r, c, α,∆)⊗n) be given, for some integers r,∆ ≥ 0

and reals c > 0 and α ≥ 0. Let d and θ be positive integers with

θ ≥ 2d, (5.4.28)

θ ≥ 4en(1 + lnn)

c2
, (5.4.29)

2dθ/re+αdθ/2e ≥ 4

(
8nr

c

)d
. (5.4.30)

Then there is a probability distribution Λ̃ : Nn → R such that

supp Λ̃ ⊆ (supp Λ)|<2θ+n∆, (5.4.31)

orth(Λ− Λ̃) > d. (5.4.32)

Proof. We first consider the special case when Λ ∈ B(r, c, α,∆)⊗n. Then by def-

inition, Λ(t1, . . . , tn) = Λ′(t1 − a1, . . . , tn − an) for some probability distribution

Λ′ ∈ B(r, c, α)⊗n and integers a1, . . . , an ∈ [0,∆]. Applying Theorem 5.24 to Λ′

yields a function Λ̃′ : Nn → R with

supp Λ̃′ ⊆ (supp Λ)|<2θ, (5.4.33)

orth(Λ′ − Λ̃′) > d, (5.4.34)

|Λ′ − Λ̃′| ≤ Λ′ on supp Λ̃′. (5.4.35)

The last property implies in particular that Λ̃′ is a nonnegative function. As a result,

(5.4.32) and Proposition 5.10 guarantee that Λ̃′ is a distribution. Now the sought
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properties (5.4.31) and (5.4.32) follow from (5.4.33) and (5.4.34), respectively, for the

probability distribution Λ̃(t1, . . . , tn) = Λ̃′(t1 − a, . . . , tn − an).

In the general case of a convex combination Λ = λ1Λ1 + · · · + λkΛk of probability

distributions Λ1, . . . ,Λk ∈ B(r, c, α,∆)⊗n, one uses the technique of the previous para-

graph to transform Λ1, . . . ,Λk individually into corresponding functions Λ̃1, . . . , Λ̃k,

and takes Λ̃ = λ1Λ̃1 + · · ·+ λkΛ̃k. �

5.4.2. A bounded dual polynomial for MP. We now turn to the construc-

tion of a gadget for our amplification theorem. Let B∗(r, c, α) denote the family of

probability distributions λ on N such that

suppλ = {0, 1, 2, . . . , r′}

for some nonnegative integer r′ ≤ r, and moreover

c

(t+ 1)2 2αt
≤ λ(t) ≤ 1

c(t+ 1)2 2αt
, t ∈ suppλ.

In this family, a distribution’s weight at any given point is prescribed up to the

multiplicative constant c, in contrast to the exponentially large range allowed in the

definition of B(r, c, α). For all parameter settings, we have

B∗(r, c, α) ⊆ B(r, c, α). (5.4.36)

Indeed, the containment holds trivially for c ≤ 1, and remains valid for c > 1 because

the left-hand side and right-hand side are both empty in that case. As before, it will

be helpful to have shorthand notation for translates of distributions in B(r, c, α): we

define B∗(r, c, α,∆) for ∆ ≥ 0 to be the family of probability distributions λ on N

such that λ(t) = λ′(t− a) for some λ′ ∈ B∗(r, c, α) and a ∈ [0,∆].
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As a first step toward analyzing the threshold degree of AC0, we will construct a dual

object that witnesses the high threshold degree of MP∗m,r and possesses additional

metric properties in the sense of B∗. To simplify the exposition, we start with an

auxiliary construction.

Lemma 5.26. Let 0 < ε < 1 be given. Then for some constants c1, c2 ∈ (0, 1) and all

integers R ≥ r ≥ 1, there are (explicitly given) probability distributions λ0, λ1, λ2 such

that:

suppλ0 = {0}, (5.4.37)

suppλi = {1, 2, . . . , R}, i = 1, 2, (5.4.38)

λi ∈ B∗
(
R, c1,

c2√
r
, 1

)
, i = 0, 1, 2, (5.4.39)

orth((1− ε)λ0 + ελ2 − λ1) ≥ c1

√
r. (5.4.40)

Our analysis of the threshold degree of AC0 only uses the special case R = r of

Lemma 5.26. The more general formulation with R ≥ r will be needed much later,

in the analysis of the sign-rank of AC0.

Proof. Theorem 5.17 constructs a function ψ : {0, 1, 2, . . . , R} → R such that

ψ(0) >
1− ε

2

2
, (5.4.41)

‖ψ‖1 = 1, (5.4.42)

orthψ ≥ c′
√
r, (5.4.43)

|ψ(t)| ∈
[

c′

(t+ 1)2 2c′′t/
√
r
,

1

c′(t+ 1)2 2c′′t/
√
r

]
, t = 0, 1, . . . , r, (5.4.44)

for some absolute constants c′, c′′ ∈ (0, 1). Property (5.4.42) makes it possible to view

|ψ| as a probability distribution on {0, 1, 2, . . . , R}. Let µ0, µ1, µ2 be the probability
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distributions induced by |ψ| on {0}, {t 6= 0 : ψ(t) < 0}, and {t 6= 0 : ψ(t) > 0},

respectively. It is clear from (5.4.41) that the negative part of ψ is a multiple of

µ1, whereas the positive part of ψ is a nonnegative linear combination of µ0 and µ2.

Moreover, it follows from 〈ψ, 1〉 = 0 and ‖ψ‖1 = 1 that the positive and negative

parts of ψ both have `1-norm 1/2. Summarizing,

ψ =
1− δ

2
µ0 −

1

2
µ1 +

δ

2
µ2 (5.4.45)

for some 0 ≤ δ ≤ 1. In view of (5.4.41), we infer the more precise bound

0 ≤ δ <
ε

2
. (5.4.46)

We define

λ0 = µ0, (5.4.47)

λ1 =
1− εδ
1− δ2

µ1 + δ · ε− δ
1− δ2

µ2, (5.4.48)

λ2 =
ε− δ

ε(1− δ2)
µ1 + δ · 1− εδ

ε(1− δ2)
µ2. (5.4.49)

It follows from 0 ≤ δ ≤ ε that λ1 and λ2 are convex combinations of µ1 and µ2 and

are therefore probability distributions with support

suppλi ⊆ {1, 2, . . . , R}, i = 1, 2. (5.4.50)

Recall from (5.4.45) that |ψ| = 1
2
µ1 + δ

2
µ2 on {1, 2, . . . , R}. Comparing the coefficients

in |ψ| = 1
2
µ1 + δ

2
µ2 with the corresponding coefficients in the defining equations for

λ1 and λ2, where 0 ≤ δ ≤ ε/2 by (5.4.46), we conclude that λ1, λ2 ∈ [c′′′|ψ|, |ψ|/c′′′]

on {1, 2, . . . , R} for some constant c′′′ = c′′′(ε) ∈ (0, 1). In view of (5.4.44), we arrive
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at

|λi(t)| ∈
[

c′c′′′

(t+ 1)2 2c′′t/
√
r
,

1

c′c′′′(t+ 1)2 2c′′t/
√
r

]
,

i = 1, 2; t = 1, 2, . . . , R. (5.4.51)

Continuing,

orth((1− ε)λ0 + ελ2 − λ1) = orth

(
2 · 1− ε

1− δ

(
1− δ

2
µ0 −

1

2
µ1 +

δ

2
µ2

))
= orth

(
2 · 1− ε

1− δ
ψ

)
≥ c′
√
r, (5.4.52)

where the first step follows from the defining equations (5.4.47)–(5.4.49), the second

step uses (5.4.45), and the final step is a restatement of (5.4.46).

We are now in a position to verify the claimed properties of λ0, λ1, λ2 in the theorem

statement. Property (5.4.37) follows from (5.4.47), whereas property (5.4.38) is im-

mediate from (5.4.50) and (5.4.51). The remaining properties (5.4.39) and (5.4.40)

for small enough constants c1, c2 ∈ (0, 1) now follow from (5.4.51) and (5.4.52), re-

spectively. �

We are now in a position to construct our desired dual polynomial for the Minsky–

Papert function.
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Theorem 5.27. For some absolute constants c1, c2 ∈ (0, 1) and all positive integers

m and r, there are probability distributions Λ0,Λ1 such that

Λi ∈ conv

(
B∗
(
r, c1,

c2√
r
, 1

)⊗m)
, i = 0, 1, (5.4.53)

supp Λi ⊆ (MP∗m,r)
−1(i), i = 0, 1, (5.4.54)

orth(Λ1 − Λ0) ≥ min{m, c1

√
r}. (5.4.55)

The last two properties in the theorem statement are equivalent, in the sense of linear

programming duality, to the lower bound deg±(MP∗m,r) ≥ min{m, c1

√
r} and can be

recovered in a black-box manner from many previous papers, e.g., [90, 114, 122]. The

key new property that we prove is (5.4.53), with the newly established Lemma 5.26

playing an essential role.

Proof of Theorem 5.27. Take ε = 1/2 and R = r in Lemma 5.26, and let λ0, λ1, λ2 be

the resulting probability distributions. Let

Λ0 = E
S⊆{1,2,...,m}
|S| odd

λ⊗S0 · λ⊗S2 ,

Λ1 = λ⊗m1 .

Then (5.4.53) is immediate from (5.4.39), whereas (5.4.54) follows from (5.4.37)

and (5.4.38). To verify the remaining property (5.4.55), rewrite

Λ0 = 2−m+1
∑

S⊆{1,2,...,m}
|S| odd

λ⊗S0 · λ⊗S2

=

(
1

2
λ0 +

1

2
λ2

)⊗m
−
(
−1

2
λ0 +

1

2
λ2

)⊗m
.
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Observe that

orth(λi − λj) ≥ 1, i, j = 0, 1, 2, (5.4.56)

which can be seen from 〈λi − λj, 1〉 = 〈λi, 1〉 − 〈λj, 1〉 = 1− 1 = 0. Now

orth(Λ1 − Λ0)

= orth

(
λ⊗m1 −

(
1

2
λ0 +

1

2
λ2

)⊗m
+

(
−1

2
λ0 +

1

2
λ2

)⊗m)

≥ min

{
orth

(
λ⊗m1 −

(
1

2
λ0 +

1

2
λ2

)⊗m)
, orth

(
−1

2
λ0 +

1

2
λ2

)⊗m}

≥ min

{
orth

(
λ1 −

1

2
λ0 −

1

2
λ2

)
, orth

(
−1

2
λ0 +

1

2
λ2

)⊗m}

= min

{
orth

(
λ1 −

1

2
λ0 −

1

2
λ2

)
,m orth

(
−1

2
λ0 +

1

2
λ2

)}
= min

{
orth

(
λ1 −

1

2
λ0 −

1

2
λ2

)
,m

}
≥ min{c

√
r,m},

where the last four steps are valid by Proposition 5.7(i), Proposition 5.7(iii), Propo-

sition 5.7(ii), equation (5.4.56), and equation (5.4.40), respectively. �

5.4.3. Hardness amplification for threshold degree and beyond. We now

present a blackbox transformation that takes any given circuit with threshold de-

gree n1−ε into a circuit with polynomially larger threshold degree, Ω(n1− ε
1+ε ). This

hardness amplification procedure increases the circuit size additively by nO(1) and the

circuit depth by 2, preserving membership in AC0. We obtain analogous hardness

amplification results for a host of other approximation-theoretic complexity measures.

For this reason, we adopt the following abstract view of polynomial approximation.

Let I0, I1, I∗ be nonempty convex subsets of the real line, i.e., any kind of nonempty
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intervals (closed, open, or half-open; bounded or unbounded). Let f : X → {0, 1, ∗}

be a (possibly partial) Boolean function on a finite subset X of Euclidean space.

We define an (I0, I1, I∗)-approximant for f to be any real polynomial p that maps

f−1(0), f−1(1), f−1(∗) into I0, I1, I∗, respectively. The (I0, I1, I∗)-approximate de-

gree of f, denoted degI0,I1,I∗(f), the least degree of an (I0, I1, I∗)-approximant for

f. Threshold degree corresponds to the special case

deg± = deg(0,∞),(−∞,0),(−∞,∞) . (5.4.57)

Other notable cases include ε-approximate degree and one-sided ε-approximate degree,

given by

degε = deg[−ε,ε],[1−ε,1+ε],[−ε,1+ε], (5.4.58)

deg+
ε = deg[−ε,ε],[1−ε,∞),(−∞,∞), (5.4.59)

respectively. Our hardness amplification result applies to (I0, I1, I∗)-approximate de-

gree for any nonempty convex I0, I1, I∗ ⊆ R, with threshold degree being a special

case. The centerpiece of our argument is the following lemma.

Lemma 5.28. Let c, c′, c′′ > 0 be the absolute constants from Theorem 5.27. Let

n,m, r, d, θ be positive integers such that

θ ≥ 2d, (5.4.60)

θ ≥ 4enm(1 + ln(nm))

c′2
, (5.4.61)

θ ≥ 2
√
r

c′′

(
d log

(
8nmr

c′

)
+ 2

)
. (5.4.62)

Then for each z ∈ {0, 1}n, there is a probability distribution Λ̃z on Nnm such that:

(i) the support of Λ̃z is contained in (
∏n

i=1(MP∗m,r)−1(zi))|<2θ+nm;
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(ii) for every polynomial p : Rnm → R of degree at most d, the mapping z 7→ EΛ̃z
p

is a polynomial on {0, 1}n of degree at most 1
min{m,c

√
r} · deg p.

Proof. Theorem 5.27 constructs probability distributions Λ0 and Λ1 such that

Λi ∈ conv

(
B∗
(
r, c′,

c′′√
r
, 1

)⊗m)
, i = 0, 1, (5.4.63)

supp Λi ⊆ (MP∗m,r)
−1(i), i = 0, 1, (5.4.64)

orth(Λ1 − Λ0) ≥ min{m, c
√
r}. (5.4.65)

As a result, the probability distributions Λz =
⊗n

i=1 Λzi for z ∈ {0, 1}n obey

Λz ∈

(
conv

(
B∗
(
r, c′,

c′′√
r
, 1

)⊗m))⊗n

⊆ conv

(
B∗
(
r, c′,

c′′√
r
, 1

)⊗nm)

⊆ conv

(
B

(
r, c′,

c′′√
r
, 1

)⊗nm)
. (5.4.66)

By (5.4.60)–(5.4.62), (5.4.66), and Corollary 5.25, there are probability distribution

Λ̃z : Nnm → R for z ∈ {0, 1}n such that

supp Λ̃z ⊆ (supp Λz)|<2θ+nm, (5.4.67)

orth(Λz − Λ̃z) > d, (5.4.68)

We proceed to verify the properties required of Λ̃z. For (i), it follows from (5.4.64)

and (5.4.67) that each Λ̃z has support contained in (
∏n

i=1(MP∗m,r)−1(zi))|<2θ+nm. For

(ii), let p be any polynomial of degree at most d. Then (5.4.68) guarantees thatEΛ̃z
p =

EΛz p, where the right-hand side is by (5.4.65) and Proposition 5.8 a polynomial in

z ∈ {0, 1}n of degree at most deg p/ orth(Λ1 − Λ0) ≤ deg p/min{m, c
√
r}. �
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At its core, a hardness amplification result is a lower bound on the complexity of

a composed function in terms of the complexities of its constituent parts. We now

prove such a composition theorem for (I0, I1, I∗)-approximate degree.

Theorem 5.29. There is an absolute constant 0 < c < 1 such that

degI0,I1,I∗((f ◦MP∗m)|≤θ) ≥ min

{
cm degI0,I1,I∗(f),

cθ

m log(n+m)
− n

}
,

degI0,I1,I∗((f ◦ ¬MP∗m)|≤θ) ≥ min

{
cm degI0,I1,I∗(f),

cθ

m log(n+m)
− n

}
for all positive integers n,m, θ, all functions f : {0, 1}n → {0, 1, ∗}, and all nonempty

convex sets I0, I1, I∗ ⊆ R.

As a practical matter, note that the left-hand sides of the inequalities in Theorem 5.29

are monotonic functions of m. Therefore, the theorem implies that (f ◦MP∗m)|≤θ and

(f ◦ ¬MP∗m)|≤θ have (I0, I1, I∗)-approximate degree at least

max
m′=1,2,...,m

min

{
cm′ degI0,I1,I∗(f),

cθ

m′ log(n+m′)
− n

}
.

Proof of Theorem 5.29. Negating a function’s input has no effect on the (I0, I1, I∗)-

approximate degree, so that f(x1, x2, . . . , xn) and f(¬x1,¬x2, . . . ,¬xn) both have

(I0, I1, I∗)-approximate degree degI0,I1,I∗(f). Therefore, it suffices to prove the lower

bound on degI0,I1,I∗((f ◦MP∗m)|≤θ) for all f .

Let c ∈ (0, 1) be an absolute constant that is sufficiently small relative to the constants

in Lemma 5.28. For θ ≤ 1
c
· nm log(n + m), the lower bounds in the statement of

the theorem are nonpositive and therefore trivially true. In the complementary case

θ > 1
c
· nm log(n + m), Lemma 5.28 applies to the positive integers n′,m′, r′, d′, θ′,
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where

n′ = n,

m′ = m,

r′ = m2,

θ′ =

⌊
θ − nm

2

⌋
,

d′ =

⌊
cθ

m log(n+m)

⌋
.

We thus obtain, for each z ∈ {0, 1}n, a probability distribution Λ̃z on Nnm such

that: �

(i) the support of Λ̃z is contained in (
∏n

i=1(MP∗m)−1(zi))|≤θ;

(ii) for every polynomial p : Rnm → R of degree at most d′, the mapping z 7→

EΛ̃z
p is a polynomial on {0, 1}n of degree at most 1

cm
· deg p.

Proof. Now, let p : Rnm → R be an (I0, I1, I∗)-approximant for (f ◦MP∗m)|≤θ of degree

at most d′. Consider the mapping p∗ : z 7→ EΛ̃z
p, which we view as a polynomial

in z ∈ {0, 1}n. Then (i) along with the convexity of I0, I1, I∗ ensures that p∗ is an

(I0, I1, I∗)-approximant for f , whence deg p∗ ≥ degI0,I1,I∗(f). At the same time, (ii)

guarantees that deg p∗ ≤ 1
cm
· deg p. This pair of lower and upper bounds force

deg p ≥ cm degI0,I1,I∗(f).

Since p was chosen arbitrarily from among (I0, I1, I∗)-approximants of (f ◦MP∗m)|≤θ
that have degree at most d′, we conclude that

degI0,I1,I∗((f ◦MPm)|≤θ) ≥ min{cm degI0,I1,I∗(f), d′ + 1}

≥ min

{
cm degI0,I1,I∗(f),

cθ

m log(n+m)

}
. �
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The previous composition theorem has the following analogue for Boolean inputs.

Theorem 5.30. Let 0 < c < 1 be the absolute constant from Theorem 5.29. Let

n,m,N be positive integers. Then there is an (explicitly given) transformation

H : {0, 1}N → {0, 1}n, computable by an AND-OR-AND circuit of size (Nnm)O(1)

with bottom fan-in O(log(nm)), such that for all functions f : {0, 1}n → {0, 1, ∗} and

all nonempty convex sets I0, I1, I∗ ⊆ R,

degI0,I1,I∗(f ◦H) ≥ min

{
cm degI0,I1,I∗(f),

cN

50m log2(n+m)
− n

}
log(n+m),

degI0,I1,I∗(f ◦ ¬H) ≥ min

{
cm degI0,I1,I∗(f),

cN

50m log2(n+m)
− n

}
log(n+m).

Proof. As in the previous proof, settling the first lower bound for all f will automat-

ically settle the second lower bound, due to the invariance of (I0, I1, I∗)-approximate

degree under negation of the input bits. In what follows, we focus on f ◦H.

We may assume that N ≥ 50mn log2(n+m) since otherwise the lower bounds in the

theorem statement are nonpositive and hence trivially true. Define

θ =

⌈
N

50 log(n+m)

⌉
.

Theorem 5.23 gives a surjection G : {0, 1}6θdlog(nm+1)e → Nnm|≤θ with the following

two properties:

(i) for every coordinate i = 1, 2, . . . , nm, the mapping x 7→ OR∗θ(G(x)i) is com-

putable by an explicit DNF formula of size (nmθ)O(1) = NO(1) with bottom

fan-in O(log(nm));

(ii) for any polynomial p, the map v 7→ EG−1(v) p is a polynomial on Nnm|≤θ of degree

at most (deg p)/dlog(nm+ 1) + 1e ≤ (deg p)/ log(n+m).
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Consider the composition F = (f ◦MP∗m,θ) ◦G. Then

F = (f ◦ (ANDm ◦OR∗θ)) ◦G

= f ◦ ((ANDm ◦OR∗θ, . . . ,ANDm ◦OR∗θ︸ ︷︷ ︸
n

) ◦G),

which by property (i) of G means that F is the composition of f and an AND-OR-

AND circuit H on 6θdlog(nm + 1)e ≤ N variables of size (nmN)O(1) = NO(1) with

bottom fan-in O(log(nm)). Hence, the proof will be complete once we show that

degI0,I1,I∗(F ) ≥ min

{
cm degI0,I1,I∗(f),

cN

50m log2(n+m)
− n

}
log(n+m).

(5.4.69)

For this, fix an (I0, I1, I∗)-approximant p for F of degree degI0,I1,I∗(F ). Consider the

polynomial p∗ : Nnm|≤θ → R given by p∗(v) = EG−1(v) p. Since I0, I1, I∗ are convex

and p is an (I0, I1, I∗)-approximant for F = (f ◦MP∗m,θ) ◦ G, it follows that p∗ is an

(I0, I1, I∗)-approximant for (f ◦MP∗m,θ)|≤θ. Therefore,

deg p∗ ≥ degI0,I1,I∗((f ◦MP∗m,θ)|≤θ)

≥ degI0,I1,I∗((f ◦MP∗m)|≤θ)

≥ min

{
cm degI0,I1,I∗(f),

cθ

m log(n+m)
− n

}
≥ min

{
cm degI0,I1,I∗(f),

cN

50m log2(n+m)
− n

}
,

where the second step is valid because MP∗m,θ contains MP∗m = MP∗m,m2 as a subfunc-

tion, and the third step is legitimate by Theorem 5.29. However, property (ii) of G
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states that

deg p∗ ≤ deg p

log(n+m)

=
degI0,I1,I∗(F )

log(n+m)
.

Comparing these lower and upper bounds on the degree of p∗ settles (5.4.69). �

At last, we illustrate the use of the previous two composition results to amplify

hardness for polynomial approximation.

Theorem 5.31 (Hardness amplification). Let I0, I1, I∗ ⊆ R be any nonempty convex

subsets. Let f : {0, 1}n → {0, 1} be a given function with

degI0,I1,I∗(f) ≥ n1− 1
k ,

for some real number k ≥ 1. Suppose further that f is computable by a Boolean circuit

of size s and depth d, where d ≥ 1. Then there is a function F : {0, 1}N → {0, 1} on

N = Θ(n1+ 1
k log2 n) variables with

degI0,I1,I∗(F ) ≥ Ω

(
N1− 1

k+1

log1− 2
k+1 N

)
.

Moreover, F is computable by a Boolean circuit of size s + nO(1), bottom fan-in

O(log n), depth d+ 2 if the circuit for f is monotone, and depth d+ 3 otherwise.

Proof. Take

m = dn1/ke,

N =

⌈
100

c
mn log2(n+m)

⌉
,
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where 0 < c < 1 is the absolute constant from Theorem 5.29. Then Theorem 5.30

gives an explicit transformation H : {0, 1}N → {0, 1}n, computable by an AND-OR-

AND circuit of size nO(1) with bottom fan-in O(log n), such that

min{degI0,I1,I∗(f ◦H), degI0,I1,I∗(f ◦ ¬H)}

≥ min

{
cm degI0,I1,I∗(f),

cN

50m log2(n+m)
− n

}
log(n+m)

≥ cn log n

= Θ

(
N1− 1

k+1

log1− 2
k+1 N

)
.

Now, fix a circuit for f of size s and depth d ≥ 1. Composing the circuits for f and

H results in circuits for f ◦H and f ◦ ¬H of size s + nO(1), bottom fan-in O(log n),

and depth at most d+ 3. Thus, F can be taken to be either of f ◦H and f ◦ ¬H.

When the circuit for f is monotone, the depth of F can be reduced to d+2 as follows.

After merging like gates if necessary, the circuit for f can be viewed as composed of

d layers of alternating gates (∧ and ∨). The bottom layer of f can therefore be

merged with the top layer of either H or ¬H, resulting in a circuit of depth at most

d+ 3− 1 = 2. �

We emphasize that in view of (5.4.57), the symbol degI0,I1,I∗ in Theorems 5.29–5.31

can be replaced with the threshold degree symbol deg±. The same goes for any other

special case of (I0, I1, I∗)-approximate degree.

5.4.4. Threshold degree of surjectivity. We start with the simplest applica-

tion of our amplification theorem, in which the outer function f is the identity map

f : {0, 1} → {0, 1} on a single bit.
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Theorem 5.32. For any integer m ≥ 1,

deg±(MP∗m|≤m2 logm) = Ω(m).

Proof. Let f : {0, 1} → {0, 1} be the identity function, so that deg±(f) = 1. Invoking

Theorem 5.29 with n = 1 and θ = bm2 logmc, one obtains the claimed lower bound.

�

Theorem 5.32 has a useful interpretation. For positive integers n and r, the surjectivity

problem is the problem of determining whether a given mapping {1, 2, . . . , n} →

{1, 2, . . . , r} is surjective. This problem is trivial for r > n, and the standard regime

studied in previous work is r ≤ cn for some constant 0 < c < 1. The input to the

surjectivity problem is represented by a Boolean matrix x ∈ {0, 1}r×n with precisely

one nonzero entry in every column. More formally, let e1, e2, . . . , er be the standard

basis for Rn. The surjectivity function SURJn,r : {e1, e2, . . . , er}n → {0, 1} is given by

SURJn,r(x1, x2, . . . , xn) =
r∧
j=1

n∨
i=1

xi,j.

It is clear that SURJn,r(x1, x2, . . . , xn) is uniquely determined by the vector sum

x1 +x2 + · · ·+xn ∈ Nr|n. It is therefore natural to consider a symmetric counterpart of

the surjectivity function, with domain Nr|n instead of {e1, e2, . . . , er}n. This symmetric

version is (ANDr ◦OR∗n)|n = MP∗r,n|n, and Proposition 5.13 ensures that

deg±(SURJn,r) = deg±(MP∗r,n|n). (5.4.70)

The surjectivity problem has seen much work recently [15, 126, 33, 39]. In par-

ticular, Bun and Thaler [39] have obtained an essentially tight lower bound of

Ω̃(min{r,
√
n/ log n}) on the threshold degree of SURJn,r in the standard regime

r ≤ (1 − Ω(1))n. As a corollary to Theorem 5.32, we give a new proof of Bun and

Thaler’s result, sharpening their bound by a polylogarithmic factor.

204



Corollary 5.33. For any integers n > r ≥ 1,

deg±(SURJn,r) ≥ Ω

(
min

{
r,

√
n− r

1 + log(n− r)

})
. (5.4.71)

Proof. Define

r′ = min

{
r − 1,

⌊√
n− r

1 + log(n− r)

⌋}
. (5.4.72)

We may assume that r′ ≥ 1 since (5.4.71) holds trivially otherwise. The identity

MP∗r′,n(x1, x2, . . . , xr′)

= MP∗r,n

x1, x2, . . . , xr′ , 1, 1, . . . , 1︸ ︷︷ ︸
r−r′−1

, 1 + n− (r − r′)−
r′∑
i=1

xi


holds for all (x1, x2, . . . , xr′) ∈ Nr

′ |≤n−(r−r′), whence

deg±(MP∗r′,n|≤n−(r−r′)) ≤ deg±(MP∗r,n|n). (5.4.73)

Now

deg±(SURJn,r) = deg±(MP∗r,n|n)

≥ deg±(MP∗r′,n|≤n−(r−r′))

≥ deg±(MP∗r′,r′2|≤r′2 log r′)

≥ Ω(r′),

where the four steps use (5.4.70), (5.4.73), (5.4.72), and Theorem 5.32, respectively.

�

5.4.5. Threshold degree and discrepancy of AC0. We now turn to our main

result on the sign-representation of constant-depth circuits. For any ε > 0, the

next theorem constructs a circuit family in AC0 with threshold degree Ω(n1−ε). The
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proof amounts to a recursive application of the hardness amplification procedure of

Section 5.4.3.

Theorem 5.34. Let k ≥ 1 be a fixed integer. Then there is an (explicitly given)

family of functions {fk,n}∞n=1, where fk,n : {0, 1}n → {0, 1} has threshold degree

deg±(fk,n) = Ω
(
n
k−1
k+1 · (log n)−

1
k+1
d k−2

2
eb k−2

2
c
)

(5.4.74)

and is computable by a monotone Boolean circuit of size nO(1) and depth k. In addition,

the circuit for fk,n has bottom fan-in O(log n) for all k 6= 2.

Proof. The proof is by induction on k. The base cases k = 1 and k = 2 correspond to

the families

f1,n(x) = x1, n = 1, 2, 3, . . . ,

f2,n(x) = MPbn1/3c, n = 1, 2, 3, . . . .

For the former, the threshold degree lower bound (5.4.74) is trivial. For the latter, it

follows from Theorem 2.4.

For the inductive step, fix k ≥ 3. Due to the asymptotic nature of (5.4.74), it is

enough to construct the functions in {fk,n}∞n=1 for n larger than a certain constant of

our choosing. As a starting point, the inductive hypothesis gives an explicit family

{fk−2,n}∞n=1 in which fk−2,n : {0, 1}n → {0, 1} has threshold degree

deg±(fk−2,n) = Ω
(
n
k−3
k−1 · (log n)−

1
k−1
d k−4

2
eb k−4

2
c
)

(5.4.75)

and is computable by a monotone Boolean circuit of size nO(1) and depth k − 2. We

view the circuit for fk−2,n as composed of k − 2 layers of alternating gates, where

without loss of generality the bottom layer consists of AND gates. This last property

can be forced by using ¬fk−2,n(¬x1,¬x2, . . . ,¬xn) instead of fk−2,n(x1, x2, . . . , xn),
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which interchanges the circuit’s AND and OR gates without affecting the threshold

degree, circuit depth, or circuit size.

Now, let c > 0 be the absolute constant from Theorem 5.29. For every N larger that

a certain constant, we apply Theorem 5.30 with

n =
⌈
N

k−1
k+1 (logN)−

1
k+1
d k−4

2
eb k−4

2
c− 2(k−1)

k+1 · c

100

⌉
, (5.4.76)

m =
⌈
N

2
k+1 (logN)

1
k+1
d k−4

2
eb k−4

2
c− 4

k+1

⌉
, (5.4.77)

f = fk−2,n, (5.4.78)

I0 = (0,∞), (5.4.79)

I1 = (−∞, 0), (5.4.80)

I∗ = (−∞,∞) (5.4.81)

to obtain a function HN : {0, 1}N → {0, 1}n such that the composition FN = fk−2,n ◦

HN has threshold degree

deg±(FN) ≥ min

{
cm deg±(fk−2,n),

cN

50m log2(n+m)
− n

}
log(n+m)

= Θ
(
N

k−1
k+1 (logN)−

1
k+1
d k−4

2
eb k−4

2
c− k−3

k+1

)
= Θ

(
N

k−1
k+1 (logN)−

1
k+1
d k−2

2
eb k−2

2
c
)
, (5.4.82)

where the second step uses (5.4.75)–(5.4.77). Moreover, Theorem 5.30 ensures that

HN is computable by an AND-OR-AND circuit of polynomial size and bottom fan-in

O(logN). The bottom layer of fk−2,n consists of AND gates, which can be merged

with the top layer of HN to produce a circuit for FN = fk−2,n ◦HN of depth (k− 2) +

3− 1 = k.

We have thus constructed, for some constant N0, a family of functions {FN}∞N=N0
in

which each FN : {0, 1}N → {0, 1} has threshold degree (5.4.82) and is computable
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by a Boolean circuit of polynomial size, depth k, and bottom fan-in O(logN). Now,

take the circuit for FN and replace the negated inputs in it with N new, unnegated

inputs. The resulting monotone circuit on 2N variables computes FN as a subfunction

and therefore has threshold degree at least that of FN . This completes the inductive

step. �

Using the pattern matrix method, we now lift the previous theorem to multiparty

communication complexity.

Theorem 5.35. Let k ≥ 3 be a fixed integer. Let ` : N → N be a given function.

Then there is an (explicitly given) family {Fn}∞n=1, where Fn : ({0, 1}n)`(n) → {0, 1}

is an `(n)-party communication problem with discrepancy

disc(Fn) ≤ 2 exp

(
−Ω

((
n

4`(n)`(n)2

) k−1
k+1

· (log n)−
1
k+1
d k−2

2
eb k−2

2
c

))
(5.4.83)

and communication complexity

PP(Fn) = Ω

((
n

4`(n)`(n)2

) k−1
k+1

· (log n)−
1
k+1
d k−2

2
eb k−2

2
c

)
. (5.4.84)

Moreover, Fn is computable by a Boolean circuit of polynomial size and depth k + 2

in which the bottom three layers have fan-in O(log n), O(4`(n)`(n)2), and `(n), in that

order. In particular, if `(n) = O(1), then Fn is computable by a Boolean circuit of

polynomial size, depth k, and bottom fan-in O(log n).

Proof. Theorem 5.34 constructs a family of functions {fn}∞n=1, where fn : {0, 1}n →

{0, 1} has threshold degree

deg±(fn) = Ω
(
n
k−1
k+1 · (log n)−

1
k+1
d k−2

2
eb k−2

2
c
)

(5.4.85)

and is computable by a Boolean circuit of polynomial size, depth k, and bottom fan-in

O(log n). Now, let c > 0 be the absolute constant from Theorem 3.10. For any given
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n, define

Fn =

AND`(n) if n ≤ 2m,

fbn/mc ◦ NORm ◦ AND`(n) otherwise,

where m = 2dc4`(n)`(n)2e. Then the discrepancy bound (3.10) is trivial for n ≤ 2m,

and follows from (5.4.85) and Theorem 3.10 for n > 2m. The lower bound (5.4.84) on

the communication complexity of Fn with weakly unbounded error is now immediate

by the discrepancy method (Corollary 3.8).

It remains to examine the circuit complexity of Fn. Since fn is computable by a

circuit of polynomial size, depth k, and bottom fan-in O(log n), it follows that Fn is

computable by a circuit of polynomial size and depth k+2 in which the bottom three

levels have fan-in O(log n), O(4`(n)`(n)2), and `(n), in that order. This means that

for `(n) = O(1), any gate of the bottom four levels can be computed by a circuit of

polynomial size, depth 2, and bottom fan-in O(log n), which in turn yields a circuit

for Fn of polynomial size, depth (k+ 2)− 4 + 2 = k, and bottom fan-in O(log n). �

Theorems 5.34 and 5.35 settle Theorems 5.1 and 5.4, respectively, from the introduc-

tion.

5.5. The sign-rank of AC0

We now turn to the second main result of this chapter, a near-linear lower bound on

the sign-rank of constant-depth circuits. To start with, we show that our smoothing

technique from Theorem 5.27 already gives an exponential lower bound on the sign-

rank of AC0. Specifically, we prove in Section 5.5.1 that the Minsky–Papert function

MPn1/3 has exp(−O(n1/3))-smooth threshold degree Ω(n1/3), which by Theorem 3.11
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immediately implies an exp(Ω(n1/3)) lower bound on the sign-rank of an AC0 cir-

cuit family of depth 3. This result was originally obtained, with a longer and more

demanding proof, by Razborov and Sherstov [106].

To obtain a near-optimal lower bound of exp(Ω(n1−ε)), we use a completely differ-

ent approach. It is based on the notion of local smoothness and is unrelated to the

threshold degree analysis. In Section 5.5.2, we define local smoothness and record

basic properties of locally smooth functions. In Sections 5.5.3 and 5.5.4, we develop

techniques for manipulating locally smooth functions to achieve desired global be-

havior, without the manipulations being detectable by low-degree polynomials. To

apply this machinery to constant-depth circuits, we design in Section 5.5.5 a locally

smooth dual polynomial for the Minsky–Papert function. We use this dual object in

Section 5.5.6 to prove an amplification theorem for smooth threshold degree. We ap-

ply the amplification theorem iteratively in Section 5.5.7 to construct, for any ε > 0,

a constant-depth circuit with exp(−n1−ε)-smooth threshold degree Ω(n1−ε). Finally,

we present our main result on the sign-rank of AC0 in Section 5.5.8.

In the remainder of this section, we adopt the following additional notation. For an

arbitrary subset X of Euclidean space, we write diamX = supx,x′∈X |x − x′|, with

the convention that diam∅ = 0. For a vector x ∈ Zn and a natural number d, we

let Bd(x) = {v ∈ Zn : |x − v| ≤ d} denote the set of integer-valued vectors within

distance d of x. For all x,

|Bd(x)| = |Bd(0)| ≤ 2d
(
n+ d

d

)
, (5.5.1)

where the binomial coefficient corresponds to the number of nonnegative integer vec-

tors of weight at most d. Finally, for vectors u, v ∈ Nn, we define cube(u, v) to be the
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smallest Cartesian product of integer intervals that contains both u and v. Specifically,

cube(u, v) = {w ∈ Nn : min{ui, vi} ≤ wi ≤ max{ui, vi} for all i}

=
n∏
i=1

{min{ui, vi},min{ui, vi}+ 1, . . . ,max{ui, vi}}.

5.5.1. A simple lower bound for depth 3. We start by presenting a new

proof of Razborov and Sherstov’s exponential lower bound [106] on the sign-rank

of AC0. More precisely, we prove the following stronger result that was not known

before.

Theorem 5.36. There is a constant 0 < c < 1 such that for all positive integers m

and r,

deg±(MPm,r, 12−m−1) ≥ min{m, c
√
r}.

Theorem 5.36 is asymptotically optimal, and it is the first lower bound on the smooth

threshold degree of the Minsky–Papert function. As we will discuss shortly, this

theorem implies an exp(Ω(n1/3)) lower bound on the sign-rank of AC0. In addition,

we will use Theorem 5.36 as the base case in the inductive proof of Theorem 5.3.

Proof of Theorem 5.36. It is well-known [93, 99, 137] that for some constant c > 0

and all r, any real polynomial p : {0, 1}r → R with ‖p−ORr‖∞ ≤ 0.49 has degree at

least c
√
r. By linear programming duality [122, Theorem 2.5], this approximation-

theoretic fact is equivalent to the existence of a function ψ : {0, 1}m → R with

ψ(0) > 0.49, (5.5.2)

‖ψ‖1 = 1, (5.5.3)

orthψ ≥ c
√
r. (5.5.4)
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The rest of the proof is a reprise of Section 5.4.2. To begin with, property (5.5.3)

makes it possible to view |ψ| as a probability distribution on {0, 1}r. Let µ0, µ1, µ2 be

the probability distributions induced by |ψ| on the sets {0r}, {x 6= 0r : ψ(x) < 0}, and

{x 6= 0r : ψ(x) > 0}, respectively. It is clear from (5.5.2) that the negative part of ψ

is a multiple of µ1, whereas the positive part of ψ is a nonnegative linear combination

of µ0 and µ2. Moreover, it follows from 〈ψ, 1〉 = 0 and ‖ψ‖1 = 1 that the positive and

negative parts of ψ both have `1-norm 1/2. Summarizing,

ψ =
1− δ

2
µ0 −

1

2
µ1 +

δ

2
µ2 (5.5.5)

for some 0 ≤ δ ≤ 1. In view of (5.5.2), we infer the more precise bound

0 ≤ δ <
1

50
. (5.5.6)

Let υ be the uniform probability distribution on {0, 1}r \ {0r}. We define

λ0 = µ0, (5.5.7)

λ1 =
2

3(1− δ)
µ1 +

(
1− 2

3(1− δ)

)
υ, (5.5.8)

λ2 =
2δ

1− δ
µ2 +

(
1− 2δ

1− δ

)
υ. (5.5.9)

It is clear from (5.5.6) that λ1 and λ2 are convex combinations of υ, µ1, µ2 and therefore

are probability distributions with support

suppλi ⊆ {0, 1}r \ {0r}, i = 1, 2, (5.5.10)

whereas

suppλ0 = {0r} (5.5.11)
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by definition. Moreover, (5.5.6) implies that

λi ≥
1

4
υ, i = 1, 2. (5.5.12)

The defining equations (5.5.7)–(5.5.9) further imply that

2

3
λ0 +

1

3
λ2 − λ1 =

4

3(1− δ)
ψ,

which along with (5.5.4) gives

orth

(
2

3
λ0 +

1

3
λ2 − λ1

)
≥ c
√
r. (5.5.13)

With this work behind us, define

Λ =
1

2

(
2

3
λ0 +

1

3
λ2

)⊗m
− 1

2

(
−1

3
λ0 +

1

3
λ2

)⊗m
+

1

2
λ⊗m1 .
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Multiplying out the tensor products in the definition of Λ and collecting like terms,

we obtain

Λ =
1

2

∑
S⊆{1,2,...,m}

S 6=∅

2|S| − (−1)|S|

3m
λ⊗S0 · λ⊗S2 +

1

2
λ⊗m1 (5.5.14)

≥ 1

4

∑
S⊆{1,2,...,m}

S 6=∅

2|S|

3m
λ⊗S0 · λ⊗S2 +

1

2
λ⊗m1

≥ 1

4

∑
S⊆{1,2,...,m}

S 6=∅

2|S|

3m
λ⊗S0 ·

(
1

4
υ

)⊗S
+

1

2

(
1

4
υ

)⊗m

≥ 1

4

∑
S⊆{1,2,...,m}

2|S|

3m
λ⊗S0 ·

(
1

4
υ

)⊗S

=
1

4

(
2

3
λ0 +

1

3
· 1

4
υ

)⊗m
≥ 1

4

(
1

12 · 2r

)m
1({0,1}r)m , (5.5.15)

where the third step uses (5.5.12). In particular, Λ is a nonnegative function. We

further calculate

〈Λ, 1〉 =
1

2

〈
2

3
λ0 +

1

3
λ2, 1

〉m
− 1

2

〈
−1

3
λ0 +

1

3
λ2, 1

〉m
+

1

2
〈λ1, 1〉m

=
1

2

〈
2

3
λ0 +

1

3
λ2, 1

〉m
+

1

2
〈λ1, 1〉m

=
1

2
+

1

2

= 1, (5.5.16)

which makes Λ a probability distribution on ({0, 1}r)m.
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It remains to examine the orthogonal content of Λ · (−1)MPm,r . We have

Λ · (−1)MPm,r =
1

2

∑
S⊆{1,2,...,m}

S 6=∅

2|S| − (−1)|S|

3m
λ⊗S0 · λ⊗S2 · (−1)MPm,r

+
1

2
λ⊗m1 · (−1)MPm,r

=
1

2

∑
S⊆{1,2,...,m}

S 6=∅

2|S| − (−1)|S|

3m
λ⊗S0 · λ⊗S2 −

1

2
λ⊗m1

=
1

2

(
2

3
λ0 +

1

3
λ2

)⊗m
− 1

2

(
−1

3
λ0 +

1

3
λ2

)⊗m
− 1

2
λ⊗m1 ,

where the first step uses (5.5.14); the second step uses (5.5.10) and (5.5.11); and the

final equality can be verified by multiplying out the tensor powers and collecting like

terms. Now

orth(Λ · (−1)MPm,r)

= min

{
orth

(
1

2

(
2

3
λ0 +

1

3
λ2

)⊗m
− 1

2
λ⊗m1

)
,

orth

(
−1

2

(
−1

3
λ0 +

1

3
λ2

)⊗m)}

≥ min

{
orth

(
2

3
λ0 +

1

3
λ2 − λ1

)
,m orth

(
−1

3
λ0 +

1

3
λ2

)}
≥ min

{
c
√
r,m orth

(
−1

3
λ0 +

1

3
λ2

)}
≥ min{c

√
r,m},

where the first step applies Proposition 5.7(i); the second step applies Proposi-

tion 5.7(ii), (iii); the third step substitutes the lower bound from (5.5.13); and the last

step uses 〈−λ0 + λ2, 1〉 = −〈λ0, 1〉+ 〈λ2, 1〉 = −1 + 1 = 0. Combining this conclusion

with (5.5.15) and (5.5.16) completes the proof. �
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We now lift the approximation-theoretic result just obtained to a sign-rank lower

bound, reproving a result of Razborov and Sherstov [106].

Theorem 5.37 (Razborov and Sherstov). Define Fn : {0, 1}n × {0, 1}n → {0, 1} by

Fn = ANDn1/3 ◦ORn2/3 ◦ AND2.

Then

rk±(Fn) ≥ 2Ω(n1/3).

Proof. Theorem 5.36 states that

deg±(ANDn1/3 ◦ORn2/3 , exp(−c′n1/3)) ≥ c′′n1/3

for some absolute constants c′, c′′ > 0 and all n. This lower bound along with Theo-

rem 3.11 implies that the composition

Hn = ANDn1/3 ◦ORn2/3 ◦OR
2dexp( 4c′

c′′ )e ◦ AND2

has sign-rank rk±(Hn) = exp(Ω(n1/3)). This completes the proof because for some

integer constant c ≥ 1, each Hn is a subfunction of Fcn. �

5.5.2. Local smoothness. The remainder of this chapter focuses on our

exp(Ω(n1−ε)) lower bound on the sign-rank of AC0, whose proof is unrelated to the

work in Section 5.5.1. Central to our approach is an analytic notion that we call local

smoothness. Formally, let Φ: Nn → R be a function of interest. For a subset X ⊆ Nn

and a real number K ≥ 1, we say that Φ is K-smooth on X if

|Φ(x)| ≤ K |x−x
′||Φ(x′)| for all x, x′ ∈ X.
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Put another way, for any two points of X at distance d, the corresponding values of Φ

differ in magnitude by a factor of at most Kd. For any set X, we let Smooth(K,X) de-

note the family of functions that are smooth on X. The following proposition collects

basic properties of local smoothness, to which we refer as the restriction property,

scaling property, tensor property, and conical property.

Proposition 5.38. Let K ≥ 1 be given.

(i) If Φ ∈ Smooth(K,X) and X ′ ⊆ X, then Φ ∈ Smooth(K,X ′).

(ii) If Φ ∈ Smooth(K,X) and a ∈ R, then aΦ ∈ Smooth(K,X).

(iii) Smooth(K,X)⊗ Smooth(K,Y ) ⊆ Smooth(K,X × Y ).

(iv) If Φ,Ψ ∈ Smooth(K,X) and Φ,Ψ are nonnegative on X, then cone{Φ,Ψ} ⊆

Smooth(K,X).

Proof. Properties (i) and (ii) are immediate from the definition of K-smoothness.

For (iii), fix (x, y), (x′, y′) ∈ X × Y arbitrarily. Then

|Φ(x)Ψ(y)| ≤ K |x−x
′||Φ(x′)|K |y−y′||Ψ(y′)|

= K |(x,y)−(x′,y′)||Φ(x′)Ψ(y′)|,

where the first step uses the K-smoothness of Φ and Ψ. Finally, for (iv), let a and b

be nonnegative reals. Then

|aΦ(x) + bΨ(x)| = a|Φ(x)|+ b|Ψ(x)|

≤ aK |x−x
′||Φ(x′)|+ bK |x−x

′||Ψ(x′)|

= K |x−x
′||aΦ(x′) + bΨ(x′)|

for all x, x′ ∈ X, where the second step uses the K-smoothness of Φ and Ψ. �
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We will take a special interest in locally smooth functions that are probability distri-

butions. For our purposes, it will be sufficient to consider locally smooth distributions

whose support is the Cartesian product of integer intervals. By way of notation, for an

integer n ≥ 1 and a real number K ≥ 1, we let S(n,K) denote the set of probability

distributions Λ such that:

(i) Λ is supported on
∏n

i=1{0, 1, 2, . . . , ri}, for some r1, r2, . . . , rn ∈ N;

(ii) Λ is K-smooth on its support.

Analogous to the development in Section 5.4.1, it will be helpful to have notation for

translates of distributions in S(n,K). For ∆ ≥ 0, we let S(n,K,∆) denote the set of

probability distributions Λ ∈ D(Nn) such that Λ(t1, . . . , tn) ≡ Λ′(t1− a1, . . . , tn− an)

for some fixed Λ′ ∈ S(n,K) and a ∈ Nn|≤∆. As a special case, S(n,K, 0) = S(n,K).

Specializing Proposition 5.38(iii) to this context, we obtain:

Proposition 5.39. For any n′, n′′,∆′,∆′′, K, one has

S(n′, K,∆′)⊗S(n′′, K,∆′′) ⊆ S(n′ + n′, K,∆′ + ∆′′).

Proof. The only nontrivial property to verify is K-smoothness, which follows from

Proposition 5.38(iii). �

5.5.3. Metric properties of locally smooth distributions. If Λ is a locally

smooth distribution on X =
∏n

i=1{0, 1, 2, . . . , ri}, then a moment’s thought reveals

that Λ(x) > 0 at every point x ∈ X. In general, local smoothness provides one with

considerable control of the metric behavior ofX,making it possible to prove nontrivial

upper and lower bounds on Λ(S) for various sets S ⊆ X. We now record two such

results, as regards our work on the sign-rank on AC0.
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Proposition 5.40. Let Λ be a probability distribution on X =
∏n

i=1{0, 1, 2, . . . , ri}.

Let θ and d be nonnegative integers with θ ≥ d. If Λ is K-smooth on X|≤θ, then

Λ(X|≤θ) ≤ Kd

(
n+ d

d

)
Λ(X|≤θ−d).

Proof. Consider an arbitrary vector x ∈ X|≤θ. By definition, the components of x

are nonnegative integers that sum to at most θ. By decreasing the components of x

as needed, one can obtain a vector x′ with

x′ ∈ X|≤θ−d,

x′ ≤ x,

|x′ − x| ≤ d.

In particular, the K-smoothness of Λ implies that

Λ(x) ≤ KdΛ(x′).

Summing on both sides over x ∈ X|≤θ, we obtain

Λ(X|≤θ) ≤ KdΛ(X|≤θ−d) max
x′∈X|≤θ−d

|{x ∈ X|≤θ : x ≥ x′ and |x− x′| ≤ d}|

≤ KdΛ(X|≤θ−d) max
x′∈Nn

|{x ∈ Nn : x ≥ x′ and |x− x′| ≤ d}|

= KdΛ(X|≤θ−d)
(
n+ d

d

)
. �

Proposition 5.41. Let Λ be a probability distribution on X =
∏n

i=1{0, 1, 2, . . . , ri}.

Let θ and d be nonnegative integers with

d <
1

2
min

{
θ,

n∑
i=1

ri

}
. (5.5.17)
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If Λ is K-smooth on X|≤θ, then

Λ(X|≤θ) ≤ 2d+1K2d+1

(
n+ d

d

)
Λ(X|≤θ \Bd(u))

for every u ∈ X.

Proof. Fix u ∈ X for the rest of the proof. If |u| > θ + d, then X|≤θ \ Bd(u) = X|≤θ
and the statement holds trivially. In what follows, we treat the complementary case

|u| ≤ θ + d. Here, the key is to find a vector u′ with

|u− u′| = d+ 1, (5.5.18)

u′ ∈ X|≤θ. (5.5.19)

The algorithm for finding u′ depends on |u|, as follows.

(i) If |u| > d, decrease one or more of the components of u as needed to obtain a

vector u′ whose components are nonnegative integers that sum to exactly |u| −

d−1. Then (5.5.18) is immediate, whereas (5.5.19) follows in view of |u| ≤ θ+d.

(ii) If |u| ≤ d, the analysis is more subtle. Recall that u ∈
∏n

i=1{0, 1, 2, . . . , ri}

and therefore |(r1, . . . , rn) − u| =
∑
ri − |u| ≥

∑
ri − d > d, where the last

step uses (5.5.17). As a result, by increasing the components of u as necessary,

one can obtain a vector u′ ∈
∏n

i=1{0, 1, 2, . . . , ri} with |u′| = |u| + d + 1. Then

property (5.5.18) is immediate. Property (5.5.19) follows from |u′| = |u|+d+1 ≤

2d+ 1 < θ + 1, where the last step uses (5.5.17).

Now that u′ has been constructed, apply the K-smoothness of Λ to conclude that for

every x ∈ X|≤θ ∩Bd(u),

Λ(x) ≤ K |x−u
′|Λ(u′)

≤ K |x−u|+|u−u
′|Λ(u′)

≤ K2d+1Λ(u′), (5.5.20)
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where the last step uses (5.5.18). As a result,

Λ(X|≤θ ∩Bd(u)) ≤
∣∣X|≤θ ∩ Bd(u)

∣∣K2d+1Λ(u′)

≤ |Bd(u)|K2d+1Λ(u′)

≤ |Bd(u)|K2d+1Λ(X|≤θ \Bd(u))

≤ 2d
(
n+ d

d

)
K2d+1Λ(X|≤θ \Bd(u)), (5.5.21)

where the first inequality is the result of summing (5.5.20) over x ∈ X|≤θ∩Bd(u); the

third step uses (5.5.18) and (5.5.19); and the last step applies (5.5.1). To complete

the proof, add Λ(X|≤θ \Bd(u)) to both sides of (5.5.21). �

5.5.4. Weight transfer in locally smooth distributions. Locally smooth

functions exhibit great plasticity. In what follows, we will show that a locally smooth

function on
∏n

i=1{0, 1, 2, . . . , ri} can be modified to achieve a broad range of global

metric behaviors—without the modification being detectable by low-degree polynomi-

als. Among other things, we will be able to take any locally smooth distribution and

make it globally min-smooth. Our starting point is a generalization of Lemma 5.16,

which corresponds to taking v = 0n in the new result.

Lemma 5.42. Fix points u, v ∈ Nn and a natural number d < |u − v|. Then there is

a function ζu,v : cube(u, v)→ R such that

supp ζu,v ⊆ {u} ∪ {x ∈ cube(u, v) : |x− v| ≤ d}, (5.5.22)

ζu,v(u) = 1, (5.5.23)

‖ζu,v‖1 ≤ 1 + 2d
(
|u− v|
d

)
, (5.5.24)

orth ζu,v > d. (5.5.25)
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Proof. Abbreviate u∗ = (|u1 − v1|, |u2 − v2|, . . . , |un − vn|). Lemma 5.16 constructs a

function ζu∗ : Nn → R such that

supp ζu∗ ⊆ {u∗} ∪ {x ∈ Nn : x ≤ u∗ and |x| ≤ d}, (5.5.26)

ζu∗(u
∗) = 1, (5.5.27)

‖ζu∗‖1 ≤ 1 + 2d
(
|u∗|
d

)
, (5.5.28)

orth ζu∗ > d. (5.5.29)

Define ζu,v : cube(u, v)→ R by

ζu,v(x) = ζu∗(|x1 − v1|, |x2 − v2|, . . . , |xn − vn|).

Then (5.5.22) and (5.5.23) are immediate from (5.5.26) and (5.5.27), respectively.

Property (5.5.24) can be verified as follows:

‖ζu,v‖1 =
∑

x∈cube(u,v)

ζu∗(|x1 − v1|, |x2 − v2|, . . . , |xn − vn|)

=
∑
w∈Nn:
w≤u∗

ζu∗(w)

≤ 1 + 2d
(
|u∗|
d

)
,

where the last step uses (5.5.28). For (5.5.25), fix an arbitrary polynomial p of degree

at most d. Then at every point x ∈ cube(u, v), we have

p(x) = p((x1 − v1) + v1, . . . , (xn − vn) + vn)

= p(sgn(u1 − v1)|x1 − v1|+ v1, . . . , sgn(un − vn)|xn − vn|+ vn)

= q(|x1 − v1|, . . . , |xn − vn|), (5.5.30)
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where q is some polynomial of degree at most d. As a result,

〈ζu,v, p〉 =
∑

x∈cube(u,v)

ζu∗(|x1 − v1|, . . . , |xn − vn|) p(x)

=
∑

x∈cube(u,v)

ζu∗(|x1 − v1|, . . . , |xn − vn|) q(|x1 − v1|, . . . , |xn − vn|)

=
∑
w∈Nn:
w≤u∗

ζu∗(w) q(w)

= 〈ζu∗ , q〉

= 0,

where the second, fourth, and fifth steps are valid by (5.5.30), (5.5.26), and (5.5.29),

respectively. �

Our next result is a smooth analogue of Lemma 5.42. The smoothness offers a great

deal of flexibility when using the lemma to transfer weight from one region of Nn to

another, in a way that cannot be detected by a low-degree polynomial.

Lemma 5.43. Let X =
∏n

i=1{0, 1, 2, . . . , ri}, where each ri ≥ 0 is an integer. Let θ

and d be nonnegative integers with

d <
1

3
min

{
θ,

n∑
i=1

ri

}
.
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Let Λ be a probability distribution on X|≤θ. Suppose further that Λ is K-smooth on

X|≤θ. Then for every u ∈ X, there is a function Zu : Nn → R with

Zu(u) = 1, (5.5.31)

orthZu > d, (5.5.32)

‖Zu‖1 ≤ 2d
(

diam({u} ∪ supp Λ)

d

)
+ 1, (5.5.33)

|Zu(x)| ≤ 23d+1K4d+1

(
n+ d

d

)3(
diam({u} ∪ supp Λ)

d

)
Λ(x), x 6= u.

(5.5.34)

Proof. We have

1 = Λ(X|≤θ)

≤ Kd

(
n+ d

d

)
Λ(X|≤θ−d)

≤ 2d+1K3d+1

(
n+ d

d

)2

Λ(X|≤θ−d \Bd(u)), (5.5.35)

where the last two step apply Propositions 5.40 and 5.41, respectively.

We now move on to the construction of Zu. For any v ∈ X|≤θ−d \Bd(u), Lemma 5.42

gives a function ζu,v : Nn → R with

supp ζu,v ⊆ X|≤θ ∪ {u}, (5.5.36)

ζu,v(u) = 1, (5.5.37)

orth ζu,v > d, (5.5.38)

‖ζu,v‖1 ≤ 2d
(
|u− v|
d

)
+ 1. (5.5.39)
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The last inequality can be simplified as follows:

‖ζu,v‖1 ≤ 2d
(

diam(X|≤θ ∪ {u})
d

)
+ 1

≤ 2d
(

diam({u} ∪ supp Λ)

d

)
+ 1, (5.5.40)

where the first step uses v ∈ X|≤θ, and the second step is legitimate because Λ is

a K-smooth probability distribution on X|≤θ and therefore Λ 6= 0 at every point of

X|≤θ. Combining (5.5.37) and (5.5.40),

‖ζu,v‖∞ ≤ 2d
(

diam({u} ∪ supp Λ)

d

)
. (5.5.41)

We define Zu : Nn → R by

Zu(x) =
1

Λ(X|≤θ−d \Bd(u))

∑
v∈X|≤θ−d\Bd(u)

Λ(v) ζu,v(x),

which is legitimate since Λ(X|≤θ−d \Bd(u)) > 0 by (5.5.35). Then properties (5.5.31),

(5.5.32), and (5.5.33) for Zu are immediate from the corresponding properties (5.5.37),

(5.5.38), and (5.5.40) of ζu,v.

It remains to verify (5.5.34). Fix x 6= u. If x /∈ X|≤θ, then (5.5.36) implies that

Zu(x) = 0 and therefore (5.5.34) holds in that case. In the complementary case when
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x ∈ X|≤θ, we have

|Zu(x)| =
∑

v∈X|≤θ−d\Bd(u)

Λ(v)

Λ(X|≤θ−d \Bd(u))
· |ζu,v(x)|

=
∑

v∈X|≤θ−d\Bd(u):
|v−x|≤d

Λ(v)

Λ(X|≤θ−d \Bd(u))
· |ζu,v(x)|

≤
∑

v∈X|≤θ−d\Bd(u):
|v−x|≤d

KdΛ(x)

Λ(X|≤θ−d \Bd(u))
· 2d
(

diam({u} ∪ supp Λ)

d

)

≤ 2d
(
n+ d

d

)
· KdΛ(x)

Λ(X|≤θ−d \Bd(u))
· 2d
(

diam({u} ∪ supp Λ)

d

)
,

where the first step applies the triangle inequality to the definition of Zu; the second

step uses (5.5.36) and x 6= u; the third step applies the K-smoothness of Λ and

substitutes the bound from (5.5.41); and the final step uses (5.5.1). In view of (5.5.35),

this completes the proof of (5.5.34). �

We now show how to efficiently zero out a locally smooth function on points of large

Hamming weight. The modified function is pointwise close to the original and cannot

be distinguished from it by any low-degree polynomial.

Lemma 5.44. Define X =
∏n

i=1{0, 1, 2, . . . , ri}, where each ri ≥ 0 is an integer. Let

θ and d be nonnegative integers with

d <
θ

3
. (5.5.42)
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Let Φ: X → R be a function that is K-smooth on X|≤θ, with Φ|≤θ 6≡ 0. Then there is

Φ̃ : X → R such that

orth(Φ− Φ̃) > d, (5.5.43)

supp Φ̃ ⊆ X|≤θ, (5.5.44)

|Φ− Φ̃| ≤ 23d+1K4d+1

(
n+ d

d

)3(
diam(supp Φ)

d

)
‖Φ|>θ‖1

‖Φ|≤θ‖1

· |Φ|

on X|≤θ. (5.5.45)

Proof. If θ >
∑n

i=1 ri, the lemma holds trivially for Φ̃ = Φ. In what follows, we treat

the complementary case θ ≤
∑n

i=1 ri. By (5.5.42),

d <
1

3
min

{
θ,

n∑
i=1

ri

}
.

Since Φ is K-smooth on X|≤θ, the probability distribution Λ on X|≤θ given by Λ(x) =

|Φ(x)|/‖Φ|≤θ‖1 is also K-smooth. As a result, Lemma 5.43 gives for every u ∈ X a

function Zu : X → R with

Zu(u) = 1, (5.5.46)

|Zu(x)| ≤ 23d+1K4d+1

(
n+ d

d

)3(
diam({u} ∪ supp Λ)

d

)
|Φ(x)|
‖Φ|≤θ‖1

for x 6= u, (5.5.47)

orthZu > d, (5.5.48)

suppZu ⊆ X|≤θ ∪ {u}. (5.5.49)

Now define

Φ̃ = Φ−
∑

u∈X|>θ

Φ(u)Zu.
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Then (5.5.43) is immediate from (5.5.48). To verify (5.5.44), fix any point x ∈ X|>θ.

Then

Φ̃(x) = Φ(x)−
∑

u∈X|>θ

Φ(u)Zu(x)

= Φ(x)− Φ(x)Zx(x)

= 0,

where the last two steps use (5.5.49) and (5.5.46), respectively.

It remains to verify (5.5.45) on X|≤θ:

|Φ− Φ̃| ≤
∑

u∈X|>θ:
Φ(u) 6=0

Φ(u) |Zu|

≤ 23d+1K4d+1

(
n+ d

d

)3(
diam(supp Φ)

d

) ∑
u∈X|>θ:
Φ(u) 6=0

|Φ(u)| · |Φ|
‖Φ|≤θ‖1

= 23d+1K4d+1

(
n+ d

d

)3(
diam(supp Φ)

d

)
‖Φ|>θ‖1

‖Φ|≤θ‖1

· |Φ|,

where the second step uses (5.5.47). �

For technical reasons, we need a generalization of the previous lemma to functions

on
∏n

i=1{∆i,∆i + 1, . . . ,∆i + ri} for nonnegative integers ∆i and ri, and further to

convex combinations of such functions. We obtain these generalizations in the two

corollaries that follow.

Corollary 5.45. Define X =
∏n

i=1{∆i,∆i+1, . . . ,∆i+ri}, where all ∆i and ri are

nonnegative integers. Let θ and d be nonnegative integers with

d <
1

3

(
θ −

n∑
i=1

∆i

)
.
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Let Φ: X → R be a function that is K-smooth on X|≤θ, with Φ|≤θ 6≡ 0. Then there is

a function Φ̃ : X → R such that

orth(Φ− Φ̃) > d, (5.5.50)

supp Φ̃ ⊆ X|≤θ, (5.5.51)

|Φ− Φ̃| ≤ 23d+1K4d+1

(
n+ d

d

)3(
diam(supp Φ)

d

)
‖Φ|>θ‖1

‖Φ|≤θ‖1

· |Φ|

on X|≤θ. (5.5.52)

Proof. Abbreviate X ′ =
∏n

i=1{0, 1, 2, . . . , ri} and θ′ = θ−
∑n

i=1 ∆i. In this notation,

d <
θ′

3
. (5.5.53)

Consider the function Φ′ : X ′ → R given by Φ′(x) = Φ(x + (∆1,∆2 . . . ,∆n)). Then

any two points u, v ∈ X ′|≤θ′ obey

|Φ′(u)| = |Φ(u+ (∆1,∆2, . . . ,∆n))|

≤ K |u−v||Φ(v + (∆1,∆2, . . . ,∆n))|

= K |u−v||Φ′(v)|,

where the second step uses theK-smoothness of Φ onX|≤θ As a result, Φ′ isK-smooth

on X ′|≤θ′ . Moreover, ‖Φ′|≤θ′‖1 = ‖Φ|≤θ‖1 > 0. In view of (5.5.53), Lemma 5.44 gives

a function a function Φ̃′ : X ′ → R such that

orth(Φ′ − Φ̃′) > d,

supp Φ̃′ ⊆ X ′|≤θ′ ,
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and

|Φ′ − Φ̃′| ≤ 23d+1K4d+1

(
n+ d

d

)3(
diam(supp Φ′)

d

)
‖Φ′|>θ′‖1

‖Φ′|≤θ′‖1

· |Φ′|

= 23d+1K4d+1

(
n+ d

d

)3(
diam(supp Φ)

d

)
‖Φ|>θ‖1

‖Φ|≤θ‖1

· |Φ′|

on X ′|≤θ′ . As a result, (5.5.50)–(5.5.52) hold for the real-valued function Φ̃ : X → R

given by Φ̃(x) = Φ̃′(x− (∆1,∆2, . . . ,∆n)). �

Corollary 5.46. Fix integers ∆, d, θ ≥ 0 and n ≥ 1, and a real number δ, where

δ ∈ [0, 1),

d <
1

3
(θ −∆).

Then for every

Λ ∈ conv(S(n,K,∆) ∩ {Λ′ ∈ D(Nn) : Λ′(Nn|>θ) ≤ δ}),

there is a function Λ̃ : Nn → R such that

orth(Λ− Λ̃) > d,

supp Λ̃ ⊆ Nn|≤θ ∩ supp Λ,

|Λ− Λ̃| ≤ 23d+1K4d+1

(
n+ d

d

)3(
diam(supp Λ)

d

)
δ

1− δ
· Λ on Nn|≤θ.

Proof. Write Λ out explicitly as

Λ =
N∑
i=1

λiΛi
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for some positive reals λ1, . . . , λN with
∑
λi = 1, where Λi ∈ S(n,K,∆) and

Λi(Nn|>θ) ≤ δ. Then clearly

supp Λ =
n⋃
i=1

supp Λi. (5.5.54)

For i = 1, 2, . . . , N, Corollary 5.45 constructs Λ̃i : Nn → R with

orth(Λi − Λ̃i) > d, (5.5.55)

supp Λ̃i ⊆ Nn|≤θ, (5.5.56)

|Λi − Λ̃i| ≤ 23d+1K4d+1

(
n+ d

d

)3(
diam(supp Λi)

d

)
δ

1− δ
· Λi

on Nn|≤θ, (5.5.57)

supp Λ̃i ⊆ supp Λi. (5.5.58)

In view of (5.5.54)–(5.5.58), the proof is complete by taking Λ̃ =
∑N

i=1 λiΛ̃i. �

Our next result uses local smoothness to achieve something completely different.

Here, we show how to start with a locally smooth function and make it globally min-

smooth. The new function has the same sign pointwise as the original, and cannot

be distinguished from it by any low-degree polynomial. Crucially for us, the global

min-smoothness can be achieved relative to any distribution on the domain.

Lemma 5.47. Define X =
∏n

i=1{0, 1, 2, . . . , ri}, where each ri ≥ 0 is an integer. Let

θ and d be nonnegative integers with

d <
1

3
min

{
θ,

n∑
i=1

ri

}
.
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Let Φ: X|≤θ → R be a function that is K-smooth on X|≤θ. Then for every probability

distribution Λ∗ on X|≤θ, there is Φ∗ : X|≤θ → R such that

orth(Φ− Φ∗) > d, (5.5.59)

‖Φ∗‖1 ≤ 2‖Φ‖1, (5.5.60)

Φ · Φ∗ ≥ 0, (5.5.61)

|Φ∗| ≥

(
23d+1K4d+1

(
n+ d

d

)3(
diam(supp Φ)

d

))−1

‖Φ‖1 Λ∗. (5.5.62)

Proof. If Φ ≡ 0, the lemma holds trivially with Φ∗ = Φ. In the complementary case,

abbreviate

N = 23d+1K4d+1

(
n+ d

d

)3(
diam(supp Φ)

d

)
.

We will view |Φ|/‖Φ‖1 as a probability distribution on X|≤θ. By hypothesis, this

probability distribution is K-smooth on X|≤θ. In particular, X|≤θ ⊆ supp |Φ| =

supp Φ. Therefore, Lemma 5.43 gives for every u ∈ X|≤θ a function Zu : X|≤θ → R

with

Zu(u) = 1, (5.5.63)

‖Zu‖1 ≤
N

2
+ 1, (5.5.64)

|Zu(x)| ≤ N · |Φ(x)|
‖Φ‖1

, x 6= u, (5.5.65)

orthZu > d. (5.5.66)

Now, define Φ∗ : X|≤θ → R by

Φ∗ = Φ +
‖Φ‖1

N

∑
u∈X|≤θ

s̃ign(Φ(u))Λ∗(u)Zu.
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Then (5.5.59) follows directly from (5.5.66). For (5.5.60), we have:

‖Φ∗‖1 ≤ ‖Φ‖1 +
‖Φ‖1

N

∑
u∈X|≤θ

Λ∗(u) ‖Zu‖1

≤ ‖Φ‖1 +
‖Φ‖1

N
·
(
N

2
+ 1

) ∑
u∈X|≤θ

Λ∗(u)

=
3N + 2

2N
‖Φ‖1

≤ 2 ‖Φ‖1, (5.5.67)

where the second step uses (5.5.64). The remaining properties (5.5.61) and (5.5.62)

can be established simultaneously as follows: for every x ∈ X|≤θ,

s̃ign(Φ(x)) · Φ∗(x)

= |Φ(x)|+ ‖Φ‖1

N

∑
u∈X|≤θ

Λ∗(u)Zu(x)

≥ |Φ(x)|+ ‖Φ‖1

N
Λ∗(x)Zx(x)− ‖Φ‖1

N

∑
u∈X|≤θ:
u6=x

Λ∗(u) |Zu(x)|

= |Φ(x)|+ ‖Φ‖1

N
Λ∗(x)− ‖Φ‖1

N

∑
u∈X|≤θ:
u6=x

Λ∗(u) |Zu(x)|

≥ |Φ(x)|+ ‖Φ‖1

N
Λ∗(x)− ‖Φ‖1

N
·N · |Φ(x)|

‖Φ‖1

∑
u∈X|≤θ:
u6=x

Λ∗(u)

= |Φ(x)|+ ‖Φ‖1

N
Λ∗(x)− |Φ(x)| (1− Λ∗(x))

≥ ‖Φ‖1

N
Λ∗(x), (5.5.68)

where the third and fourth steps use (5.5.63) and (5.5.65), respectively. �
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5.5.5. A locally smooth dual polynomial for MP. As Sections 5.5.2–5.5.4

show, local smoothness implies several useful metric and analytic properties. To tap

into this resource, we now construct a locally smooth dual polynomial for the Minsky–

Papert function. It is helpful to view this new result as a counterpart of Theorem 5.27

from our analysis of the threshold degree of AC0. The new proof is considerably more

technical because local smoothness is a delicate property to achieve.

Theorem 5.48. For some absolute constant 0 < c < 1 and all positive integers

m, r,R with r ≤ R, there are probability distributions Λ0 and Λ1 such that

supp Λ0 = (MP∗m,R)−1(0), (5.5.69)

supp Λ1 = (MP∗m,R)−1(1), (5.5.70)

orth(Λ0 − Λ1) ≥ min{m, c
√
r}, (5.5.71)

Λ0 + Λ1

2
∈ Smooth

(m
c
, {0, 1, 2, . . . , R}m

)
, (5.5.72)

Λ0,Λ1 ∈ conv

({
λ ∈ S

(
1,

1

c
, 1

)
:

λ(t) ≤ 1

c(t+ 1)2 2ct/
√
r
for t ∈ N

}⊗m)
. (5.5.73)

Our proof of Theorem 5.48 repeatedly employs the following simple but useful crite-

rion forK-smoothness: a probability distribution λ isK-smooth on an integer interval

I = {i, i+1, i+2, . . . , j} if and only if the probabilities of any two consecutive integers

in I are within a factor of K.
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Proof of Theorem 5.48. Abbreviate ε = 1/6. For some absolute constants c′, c′′ ∈

(0, 1), Lemma 5.26 constructs probability distributions λ0, λ1, λ2 such that

suppλ0 = {0}, (5.5.74)

suppλi = {1, 2, . . . , R}, i = 1, 2, (5.5.75)

λi(t) ∈
[

c′

t2 2c′′t/
√
r
,

1

c′t2 2c′′t/
√
r

]
, i = 1, 2; t = 1, 2, . . . , R, (5.5.76)

orth((1− ε)λ0 + ελ2 − λ1) ≥ c′
√
r. (5.5.77)

We infer that

λ0 ∈ S(1, K), (5.5.78)

λ1 ∈ S(1, K, 1), (5.5.79)

λ2 ∈ S(1, K, 1), (5.5.80)

(1− ε)λ0 + ελ2 ∈ S(1, K), (5.5.81)

1

m+ 1
λ0 +

m

m+ 1
λ1 ∈ S(1, Km) (5.5.82)

for some large constant K = K(c′, c′′) ≥ 1. Indeed, (5.5.78) is trivial since λ0 is the

single-point distribution on the origin; (5.5.79) holds because by (5.5.75) and (5.5.76),

the probabilities of any pair of consecutive integers in suppλ1 = {1, 2, . . . , R} are

the same up to a constant factor; and (5.5.80)–(5.5.82) can be seen analogously, by

comparing the probabilities of any pair of consecutive integers. Combining (5.5.78)–

(5.5.82) with Proposition 5.39, we obtain

{λ0, λ1, λ2}⊗m ⊆ S(m,K,m), (5.5.83)

((1− ε)λ0 + ελ2)⊗m ∈ S(m,K), (5.5.84)(
1

m+ 1
λ0 +

m

m+ 1
λ1

)⊗m
∈ S(m,Km). (5.5.85)
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The proof centers around the dual objects Ψ1,Ψ2 : {0, 1, 2, . . . , R}m → R given by

Ψ1 =

(
1

m+ 1
λ0 +

m

m+ 1
λ1

)⊗m
− 2λ⊗m1

and

Ψ2 = 2((1− ε)λ0 + ελ2)⊗m − 2(−ελ0 + ελ2)⊗m

−
(

1

m+ 1
λ0 +

m

m+ 1
((1− ε)λ0 + ελ2)

)⊗m
.

The next four claims establish key properties of Ψ1 and Ψ2. �

Claim 5.49. Ψ1 satisfies

pos Ψ1 ∈ cone({λ0, λ1}⊗m \ {λ⊗m1 }), (5.5.86)

neg Ψ1 ∈ cone{λ⊗m1 }, (5.5.87)

1

5
|Ψ1| ≤

(
1

m+ 1
λ0 +

m

m+ 1
λ1

)⊗m
≤ |Ψ1|. (5.5.88)

Claim 5.50. Ψ2 satisfies

pos Ψ2 ∈ cone({λ0, λ2}⊗m \ {λ⊗m2 }), (5.5.89)

neg Ψ2 ∈ cone{λ⊗m2 }, (5.5.90)

1

3
|Ψ2| ≤ ((1− ε)λ0 + ελ2)⊗m ≤ 3|Ψ2|. (5.5.91)

Claim 5.51. Ψ1 and Ψ2 satisfy

supp(pos Ψi) = (MP∗m,R)−1(0), i = 1, 2, (5.5.92)

supp(neg Ψi) = (MP∗m,R)−1(1), i = 1, 2. (5.5.93)

Claim 5.52. orth(Ψ1 + Ψ2) ≥ min{m, c′
√
r}.
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Proof. We will settle Claims 5.49–5.52 shortly, once we complete the main proof.

Define

Λ0 =
2

‖Ψ1‖1 + ‖Ψ2‖1

pos(Ψ1 + Ψ2),

Λ1 =
2

‖Ψ1‖1 + ‖Ψ2‖1

neg(Ψ1 + Ψ2),

where the denominators are nonzero by (5.5.88). We proceed to verify the properties

required of Λ0 and Λ1 in the theorem statement.

Support. Recall from Claim 5.51 that the positive parts of Ψ1 and Ψ2 are sup-

ported on (MP∗m,R)−1(0). Therefore, the positive part of Ψ1 + Ψ2 is supported on

(MP∗m,R)−1(0) as well, which in turn implies that

supp Λ0 = (MP∗m,R)−1(0). (5.5.94)

Analogously, Claim 5.51 states that the negative parts of Ψ1 and Ψ2 are supported

on (MP∗m,R)−1(1). As a result, the negative part of Ψ1 + Ψ2 is also supported on

(MP∗m,R)−1(1), whence

supp Λ1 = (MP∗m,R)−1(1). (5.5.95)

Orthogonality. The defining equations for Λ0 and Λ1 imply that

Λ0 − Λ1 =
2

‖Ψ1‖1 + ‖Ψ2‖1

(Ψ1 + Ψ2),

which along with Claim 5.52 forces

orth(Λ0 − Λ1) ≥ min{m, c′
√
r}. (5.5.96)
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Nonnegativity and norm. By definition, Λ0 and Λ1 are nonnegative functions.

We calculate

‖Λ0‖1 − ‖Λ1‖1 = 〈Λ0, 1〉 − 〈Λ1, 1〉

= 〈Λ0 − Λ1, 1〉

= 0, (5.5.97)

where the first step uses the nonnegativity of Λ0 and Λ1, and the last step ap-

plies (5.5.96). In addition,

‖Λ0‖1 + ‖Λ1‖1 =
2

‖Ψ1‖1 + ‖Ψ2‖1

(‖ pos(Ψ1 + Ψ2)‖1 + ‖ neg(Ψ1 + Ψ2)‖1)

=
2

‖Ψ1‖1 + ‖Ψ2‖1

‖Ψ1 + Ψ2‖1

= 2, (5.5.98)

where the last step uses Claim 5.51. A consequence of (5.5.97) and (5.5.98) is that

‖Λ0‖1 = ‖Λ1‖1 = 1, which makes Λ0 and Λ1 probability distributions. In view

of (5.5.94) and (5.5.95), we conclude that

Λi ∈ D((MP∗m,R)−1(i)), i = 0, 1. (5.5.99)

In particular,

Λ0 + Λ1

2
∈ D({0, 1, 2, . . . , R}m). (5.5.100)
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Smoothness. We have

Λ0 + Λ1

2
=

|Ψ1 + Ψ2|
‖Ψ1‖1 + ‖Ψ2‖1

=
1

‖Ψ1‖1 + ‖Ψ2‖1

|Ψ1|+
1

‖Ψ1‖1 + ‖Ψ2‖1

|Ψ2|, (5.5.101)

where the first step follows from the defining equations for Λ0 and Λ1, and the second

step uses Claim 5.51. Inequality (5.5.88) shows that at every point, |Ψ1| is within

a factor of 5 of the tensor product ( 1
m+1

λ0 + m
m+1

λ1)⊗m, which by (5.5.85) is Km-

smooth on its support. It follows that |Ψ1| is 5Km-smooth on {0, 1, 2, . . . , R}m. By an

analogous argument, (5.5.91) and (5.5.84) imply that |Ψ2| is 3K-smooth (and hence

also 5Km-smooth) on {0, 1, 2, . . . , R}m. Now (5.5.101) shows that 1
2
(Λ0 + Λ1) is a

conical combination of two nonnegative 5Km-smooth functions on {0, 1, 2, . . . , R}m.

By Proposition 5.38(iv),

Λ0 + Λ1

2
∈ Smooth(5Km, {0, 1, 2, . . . , R}m). (5.5.102)

Having examined the convex combination Λ0+Λ1

2
, we now turn to the individual dis-

tributions Λ0 and Λ1. We have

Λ0 =
2

‖Ψ1‖1 + ‖Ψ2‖1

pos(Ψ1 + Ψ2)

=
2

‖Ψ1‖1 + ‖Ψ2‖1

(pos(Ψ1) + pos(Ψ2))

∈ cone({λ0, λ1, λ2}⊗m),
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where the first equation restates the definition of Λ0, the second step applies (5.5.92),

and the last step uses (5.5.86) and (5.5.89). Analogously,

Λ1 =
2

‖Ψ1‖1 + ‖Ψ2‖1

neg(Ψ1 + Ψ2)

=
2

‖Ψ1‖1 + ‖Ψ2‖1

(neg(Ψ1) + neg(Ψ2))

∈ cone({λ⊗m1 , λ⊗m2 }),

where the first equation restates the definition of Λ1, the second step applies (5.5.93),

and the last step uses (5.5.87) and (5.5.90). Thus, Λ0 and Λ1 are conical combina-

tions of probability distributions in {λ0, λ1, λ2}⊗m. Since Λ0 and Λ1 are themselves

probability distributions, we conclude that

Λ0,Λ1 ∈ conv({λ0, λ1, λ2}⊗m).

By (5.5.74)–(5.5.76),

λi(t) ≤
1

c′′′(t+ 1)2 2c′′′t/
√
r

(t ∈ N; i = 0, 1, 2)

for some constant c′′′ > 0. The last two equations along with (5.5.78)–(5.5.80) yield

Λ0,Λ1 ∈ conv

({
λ ∈ S(1, K, 1) :

λ(t) ≤ 1

c′′′(t+ 1)2 2c′′′t/
√
r
for t ∈ N

}⊗m)
. (5.5.103)

Now (5.5.94)–(5.5.96), (5.5.102), and (5.5.103) imply (5.5.69)–(5.5.73) for a small

enough constant c > 0. �

We now settle the four claims made in the proof of Theorem 5.48.
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Proof of Claim 5.49. Multiplying out the tensor product in the definition of Ψ1 and

collecting like terms, we obtain

Ψ1 = −
(

2−
(

m

m+ 1

)m)
λ⊗m1

+
∑

S⊆{1,2,...,m}
S 6=∅

(
1

m+ 1

)|S|(
m

m+ 1

)m−|S|
λ⊗S0 · λ⊗S1 . (5.5.104)

Recall from (5.5.74) and (5.5.75) that λ0 and λ1 are supported on {0} and

{1, 2, . . . , R}, respectively. Therefore, the right-hand side of (5.5.104) is the sum of

2m nonzero functions whose supports are pairwise disjoint. Now (5.5.86) and (5.5.87)

follow directly from (5.5.104). One further obtains that

|Ψ1| =
(

2−
(

m

m+ 1

)m)
λ⊗m1

+
∑

S⊆{1,2,...,m}
S 6=∅

(
1

m+ 1

)|S|(
m

m+ 1

)m−|S|
λ⊗S0 · λ⊗S1 .

From first principles,

(
1

m+ 1
λ0 +

m

m+ 1
λ1

)⊗m
=

(
m

m+ 1

)m
λ⊗m1

+
∑

S⊆{1,2,...,m}
S 6=∅

(
1

m+ 1

)|S|(
m

m+ 1

)m−|S|
λ⊗S0 · λ⊗S1 .

Comparing the right-hand sides of the last two equations settles (5.5.88). �
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Proof of Claim 5.50. Multiplying out the tensor powers in the definition of Ψ2 and

collecting like terms, we obtain

Ψ2 = −
(

m

m+ 1

)m
εmλ⊗m2 +

∑
S⊆{1,2,...,m}

S 6=∅

a|S| λ
⊗S
0 · λ⊗S2 , (5.5.105)

where the coefficients a1, a2, . . . , am are given by

ai =

(
2(1− ε)iεm−i − 2(−1)iεm −

(
1− εm

m+ 1

)i(
εm

m+ 1

)m−i)

= (1− ε)iεm−i
(

2− 2

(
−ε

1− ε

)i
−
(

m+ 1− εm
(m+ 1)(1− ε)

)i(
m

m+ 1

)m−i)

∈
[

1

3
(1− ε)iεm−i, 3(1− ε)iεm−i

]
. (5.5.106)

As in the proof of the previous claim, recall from (5.5.74) and (5.5.75) that λ0 and

λ2 have disjoint support. Therefore, the right-hand side of (5.5.105) is the sum of 2m

nonzero functions whose supports are pairwise disjoint. Now (5.5.89) and (5.5.90) are

immediate from (5.5.106). The disjointness of the supports of the summands on the

right-hand side of (5.5.105) also implies that

|Ψ2| =
(

m

m+ 1

)m
εmλ⊗m0 +

∑
S⊆{1,2,...,m}

S 6=∅

|a|S||λ⊗S0 · λ⊗S2 .

In view of (5.5.106), we conclude that |Ψ2| coincides up to a factor of 3 with the

function ∑
S⊆{1,2,...,m}

(1− ε)|S|εm−|S|λ⊗S0 · λ⊗S2 = ((1− ε)λ0 + ελ2)⊗m.

This settles (5.5.91) and completes the proof. �
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Proof of Claim 5.51. Recall from (5.5.74) and (5.5.75) that suppλ0 = {0} and

suppλ1 = suppλ2 = {1, 2, . . . , R}. In this light, (5.5.86)–(5.5.88) imply

supp(pos Ψ1) ⊆ (MP∗m,R)−1(0),

supp(neg Ψ1) ⊆ (MP∗m,R)−1(1),

supp(Ψ1) = (MP∗m,R)−1(0) ∪ (MP∗m,R)−1(1),

respectively. Analogously, (5.5.89)–(5.5.91) imply

supp(pos Ψ2) ⊆ (MP∗m,R)−1(0),

supp(neg Ψ2) ⊆ (MP∗m,R)−1(1),

supp(Ψ2) = (MP∗m,R)−1(0) ∪ (MP∗m,R)−1(1).

Since the support of each Ψi is the disjoint union of the supports of its positive and

negative parts, (5.5.92) and (5.5.93) follow. �

Proof of Claim 5.52. Write Ψ1 + Ψ2 = A+B + C, where

A =

(
1

m+ 1
λ0 +

m

m+ 1
λ1

)⊗m
−
(

1

m+ 1
λ0 +

m

m+ 1
((1− ε)λ0 + ελ2)

)⊗m
,

B = 2((1− ε)λ0 + ελ2)⊗m − 2λ⊗m1 ,

C = −2(−ελ0 + ελ2)⊗m.

As a result, Proposition 5.7(i) guarantees that

orth(Ψ1 + Ψ2) ≥ min{orthA, orthB, orthC}. (5.5.107)
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We have

orthA ≥ orth

((
1

m+ 1
λ0 +

m

m+ 1
λ1

)
−
(

1

m+ 1
λ0 +

m

m+ 1
((1− ε)λ0 + ελ2)

))
= orth

(
− m

m+ 1
((1− ε)λ0 + ελ2 − λ1)

)
≥ c′
√
r, (5.5.108)

where the first step uses Proposition 5.7(iii), and the last step is a restatement

of (5.5.77). Analogously,

orthB ≥ orth(((1− ε)λ0 + ελ2)− λ1)

≥ c′
√
r, (5.5.109)

where the first and second steps use Proposition 5.7(iii) and (5.5.77), respectively.

Finally,

orthC = orth((−ελ0 + ελ2)⊗m)

= m orth(−ελ0 + ελ2)

≥ m, (5.5.110)

where the second step applies Proposition 5.7(ii), and the third step is valid because

〈−ελ0 + ελ2, 1〉 = −ε〈λ0, 1〉+ ε〈λ2, 1〉 = −ε+ ε = 0. By (5.5.107)–(5.5.110), the proof

is complete. �

5.5.6. An amplification theorem for smooth threshold degree. We have

reached the technical centerpiece of our sign-rank analysis, an amplification theorem
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for smooth threshold degree. This result is considerably stronger than the amplifica-

tion theorems for threshold degree in Section 5.4.3, which does not preserve smooth-

ness. We prove the new amplification theorem by manipulating locally smooth dis-

tributions to achieve the desired global behavior, an approach unrelated to our work

in Section 5.4.3. A detailed statement of our result follows.

Theorem 5.53. There is an absolute constant C ≥ 1 such that

for all:

positive integers n,m, r, R, θ with R ≥ r and θ ≥ Cnm log(2nm);

real numbers γ ∈ [0, 1];

functions f : {0, 1}n → {0, 1};

probability distributions Λ∗ on {0, 1, 2, . . . , R}mn|≤θ; and

positive integers d with

d ≤ 1

C
min

{
m deg±(f, γ),

√
r deg±(f, γ),

θ√
r log(2nmR)

}
, (5.5.111)

one has:

orth((−1)f◦MP∗m,R · Λ) ≥ d, (5.5.112)

Λ ≥ γ · (CnmR)−8d Λ∗ (5.5.113)

for some Λ ∈ D({0, 1, 2, . . . , R}mn|≤θ).

Proof. Let 0 < c < 1 be the constant from Theorem 5.48. Take C ≥ 1/c to be a

sufficiently large absolute constant. By hypothesis,

θ ≥ Cnm log(2nm). (5.5.114)
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Abbreviate

X = {0, 1, 2, . . . , R}nm,

δ = 2−cθ/(2
√
r). (5.5.115)

The following inequalities are straightforward to verify:

d <
1

3
min{θ − nm, nmR}, (5.5.116)

θ ≥ 8enm(1 + ln(nm))

c
, (5.5.117)

23d+1

c4d+1

(
n+ d

d

)3(
nmR

d

)
δ

1− δ
<

1

2
, (5.5.118)

23d+1

(
3m

c

)4d+1(
n+ d

d

)3(
nmR

d

)
≤ (CnmR)8d

4
. (5.5.119)

For example, (5.5.116) holds because d ≤ nm/C by (5.5.111) and θ ≥ Cnm log(2nm)

by (5.5.114). Inequalities (5.5.117)–(5.5.119) follow analogously from (5.5.111)

and (5.5.114) for a large enough constant C. The rest of the proof splits neatly

into four major steps.
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Step 1: Key distributions. Theorem 5.48 provides probability distributions Λ0

and Λ1 such that

supp Λi = (MP∗m,R)−1(i), i = 0, 1, (5.5.120)

orth(Λ0 − Λ1) ≥ min{m, c
√
r}, (5.5.121)

Λ0 + Λ1

2
∈ Smooth

(m
c
, {0, 1, 2, . . . , R}m

)
, (5.5.122)

Λ0,Λ1 ∈ conv

({
λ ∈ S

(
1,

1

c
, 1

)
:

λ(t) ≤ 1

c(t+ 1)2 2ct/
√
r
for t ∈ N

}⊗m)
. (5.5.123)

Consider the probability distributions

Λz =
n⊗
i=1

Λzi , z ∈ {0, 1}n.

Then

Λz ∈ conv

({
λ ∈ S

(
1,

1

c
, 1

)
: λ(t) ≤ 1

c(t+ 1)2 2ct/
√
r
for t ∈ N

}⊗mn)

⊆ conv

(
S

(
1,

1

c
, 1

)⊗mn
∩

{
λ ∈ D(N) : λ(t) ≤ 1

c(t+ 1)2 2ct/
√
r
for t ∈ N

}⊗mn)

⊆ conv

(
S

(
1,

1

c
, 1

)⊗mn
∩
{

Λ ∈ D(Nmn) : Λ(Nnm|>θ) ≤ 2−cθ/(2
√
r)
})

⊆ conv

(
S

(
1,

1

c
, 1

)⊗mn
∩ {Λ ∈ D(Nmn) : Λ(Nnm|>θ) ≤ δ}

)

⊆ conv

(
S

(
nm,

1

c
, nm

)
∩ {Λ ∈ D(Nmn) : Λ(Nnm|>θ) ≤ δ}

)
, (5.5.124)
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where the first step uses (5.2.1) and (5.5.123); the third step is valid by (5.5.117) and

Lemma 5.20; the fourth step is a substitution from (5.5.115); and the last step is an

application of Proposition 5.39.

Step 2: Restricting the support. By (5.5.116), (5.5.124), and Corollary 5.46,

there is a real function Λ̃z : Nnm → R such that

orth(Λz − Λ̃z) > d, (5.5.125)

supp Λ̃z ⊆ Nnm|≤θ, (5.5.126)

supp Λ̃z ⊆ supp Λz, (5.5.127)

and

|Λz − Λ̃z| ≤
23d+1

c4d+1

(
n+ d

d

)3(
diam(supp Λz)

d

)
δ

1− δ
· Λz on Nnm|≤θ.

In view of (5.5.118) and diam(supp Λz) ≤ nmR, the last equation simplifies to

|Λz − Λ̃z| ≤
1

2
Λz on Nnm|≤θ. (5.5.128)

Properties (5.5.126) and (5.5.128) imply that Λ̃z is a nonnegative function, which

along with (5.5.125) and Proposition 5.10 implies that Λ̃z is a probability distribution.

Combining this fact with (5.5.120), (5.5.126), and (5.5.127) gives

Λ̃z ∈ D

(
Nnm|≤θ ∩

n∏
i=1

(MP∗m,R)−1(zi)

)
, z ∈ {0, 1}n. (5.5.129)

In particular, the Λ̃z are supported on disjoint sets of inputs.

Step 3: Ensuring min-smoothness. Recall from (5.5.129) that each of the prob-

ability distributions Λ̃z is supported on a subset of X|≤θ. Consider the function
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Φ: X|≤θ → R given by

Φ = 2−n
∑

z∈{0,1}n
(−1)f(z)Λ̃z.

Again by (5.5.129), the support of Λ̃z is contained in
∏n

i=1(MP∗m,R)−1(zi). This means

in particular that f ◦MP∗m,R = f(z) on the support of Λ̃z, whence

(−1)f(z)Λ̃z = (−1)f◦MP∗m,R · Λ̃z (5.5.130)

everywhere on X|≤θ. Making this substitution in the defining equation for Φ, we find

that

(−1)f◦MP∗m,R · Φ ≥ 0. (5.5.131)

The fact that the Λ̃z are supported on pairwise disjoint sets of inputs forces

|Φ| = 2−n
∑

z∈{0,1}n
Λ̃z (5.5.132)

and in particular

‖Φ‖1 = 1. (5.5.133)

We now examine the smoothness of Φ. For this, consider the probability distribution

Λ = 2−n
∑

z∈{0,1}n
Λz. (5.5.134)

Comparing equations (5.5.132) and (5.5.134) term by term and using the upper bound

(5.5.128), we find that |Λ− |Φ|| ≤ 1
2
Λ on X|≤θ. Equivalently,

1

2
Λ ≤ |Φ| ≤ 3

2
Λ on X|≤θ. (5.5.135)
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But

Λ =

(
1

2
Λ0 +

1

2
Λ1

)⊗n
∈ Smooth

(m
c
, {0, 1, 2, . . . , R}m

)⊗n
⊆ Smooth

(m
c
, {0, 1, 2, . . . , R}mn

)
, (5.5.136)

where the last two steps are valid by (5.5.122) and Proposition 5.38(iii), respectively.

Combining (5.5.135) and (5.5.136), we conclude that Φ is (3m/c)-smooth on X|≤θ.

As a result, (5.5.116) and Lemma 5.47 provide a function Φ∗ : X|≤θ → R with

orth(Φ− Φ∗) > d, (5.5.137)

‖Φ∗‖1 ≤ 2‖Φ‖1, (5.5.138)

Φ · Φ∗ ≥ 0, (5.5.139)

|Φ∗| ≥

(
23d+1

(
3m

c

)4d+1(
n+ d

d

)3(
diam(supp Φ)

d

))−1

‖Φ‖1 Λ∗. (5.5.140)

In view of (5.5.133), the second property simplifies to

‖Φ∗‖1 ≤ 2. (5.5.141)

Recall that on X|≤θ, the function Φ is (3m/c)-smooth and not identically zero. There-

fore, Φ must be nonzero at every point of X|≤θ, which includes the support of Φ∗. As

a result, (5.5.131) and (5.5.139) imply that

(−1)f◦MPm,R · Φ∗ ≥ 0. (5.5.142)

Finally, using diam(supp Φ) ≤ nmR along with the bounds (5.5.119) and (5.5.133),

we can restate (5.5.140) as

|Φ∗| ≥ 4(CnmR)−8dΛ∗. (5.5.143)
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Step 4: The final construction. By the definition of smooth threshold degree,

there is a probability distribution µ on {0, 1}n such that

orth((−1)f · µ) ≥ deg±(f, γ), (5.5.144)

µ(z) ≥ γ · 2−n, z ∈ {0, 1}n. (5.5.145)

Define

Φfinal =
∑

z∈{0,1}n
µ(z)(−1)f(z)Λ̃z − γΦ + γΦ∗.

The right-hand side is a linear combination of functions on X|≤θ, whence

supp(Φfinal) ⊆ X|≤θ. (5.5.146)

Moreover,

‖Φfinal‖1 ≤
∑

z∈{0,1}n
µ(z)‖Λ̃z‖1 + γ‖Φ‖1 + γ‖Φ∗‖1

≤ 1 + 3γ

≤ 4, (5.5.147)
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where the first step applies the triangle inequality, and the second step uses (5.5.129),

(5.5.133) and (5.5.141). Continuing,

(−1)f◦MP∗m,R · Φfinal

= (−1)f◦MP∗m,R ·

 ∑
z∈{0,1}n

(µ(z)− γ2−n)(−1)f(z)Λ̃z + γΦ∗


=

∑
z∈{0,1}n

(µ(z)− γ2−n)(−1)f◦MP∗m,R · (−1)f(z)Λ̃z + γ(−1)f◦MP∗m,R · Φ∗

=
∑

z∈{0,1}n
(µ(z)− γ2−n)Λ̃z + γ|Φ∗| (5.5.148)

≥ γ|Φ∗|

≥ 4γ(CnmR)−8dΛ∗, (5.5.149)

where the first step applies the definition of Φ; the third step uses (5.5.130)

and (5.5.142); the fourth step follows from (5.5.145); and the fifth step substitutes

the lower bound from (5.5.143). Now

Φfinal 6≡ 0 (5.5.150)

follows from (5.5.148) if γ = 0, and from (5.5.149) if γ > 0.

It remains to examine the orthogonal content of Φfinal. For this, write

Φfinal =
∑

z∈{0,1}n
µ(z)(−1)f(z)Λz +

∑
z∈{0,1}n

µ(z)(−1)f(z)(Λ̃z − Λz)

+ γ(Φ∗ − Φ).
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Then

orth(Φfinal) ≥ min

orth

 ∑
z∈{0,1}n

µ(z)(−1)f(z)Λz

 ,

min
z
{orth(Λ̃z − Λz)}, orth(Φ∗ − Φ)


≥ min

orth

 ∑
z∈{0,1}n

µ(z)(−1)f(z)Λz

 , d


≥ min

orth

 ∑
z∈{0,1}n

µ(z)(−1)f(z)

n⊗
i=1

Λzi

 , d


≥ min

{
orth(µ · (−1)f ) orth(Λ1 − Λ0), d

}
≥ min{deg±(f, γ) min{m, c

√
r}, d}

= d, (5.5.151)

where the first step applies Proposition 5.7(i); the second step follows from (5.5.125)

and (5.5.137); the third step is valid by the definition of Λz; the fourth step applies

Corollary 5.9; the fifth step substitutes the lower bounds from (5.5.121) and (5.5.144);

and the final step uses (5.5.111).

To complete the proof, let

Λ =
Φfinal

‖Φfinal‖1

· (−1)f◦MP∗m,R ,

where the right-hand side is well-defined by (5.5.150). Then ‖Λ‖1 = 1 by defini-

tion. Moreover, (5.5.146) and (5.5.149) guarantee that Λ is a nonnegative function

with support contained in X|≤θ, so that Λ ∈ D(X|≤θ). The orthogonality prop-

erty (5.5.112) follows from (5.5.151), whereas the min-smoothness property (5.5.113)

follows from (5.5.147) and (5.5.149). �
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We now translate the new amplification theorem from Nn|≤θ to the hypercube, using

the input transformation scheme of Theorem 5.23.

Theorem 5.54. Let C ≥ 1 be the absolute constant from Theorem 5.53. Fix positive

integers n,m, θ with θ ≥ Cnm log(2nm). Then there is an (explicitly given) transfor-

mation H : {0, 1}6θdlog(nm+1)e → {0, 1}n, computable by an AND-OR-AND circuit of

polynomial size with bottom fan-in at most 6dlog(nm+ 1)e, such that

deg±(f ◦H, γθ−24d) ≥ ddlog(nm+ 1) + 1e, (5.5.152)

deg±(f ◦ ¬H, γθ−24d) ≥ ddlog(nm+ 1) + 1e (5.5.153)

for all Boolean functions f : {0, 1}n → {0, 1}, all real numbers γ ∈ [0, 1], and all

positive integers

d ≤ 1

C
min

{
m deg±(f, γ),

θ

4m log θ

}
.

Proof. Negating a function’s input bits has no effect on its γ-smooth threshold degree

for any 0 ≤ γ ≤ 1, so that f(x1, x2, . . . , xn) and f(¬x1,¬x2, . . . ,¬xn) both have γ-

smooth threshold degree deg±(f, γ). Therefore, proving (5.5.152) for all f will also

settle (5.5.153) for all f. In what follows, we focus on the former.

Theorem 5.23 constructs an explicit surjection G : {0, 1}N → Nnm|≤θ on N =

6θdlog(nm+ 1)e variables with the following two properties:

(i) for every coordinate i = 1, 2, . . . , nm, the mapping x 7→ OR∗θ(G(x)i) is com-

putable by a DNF formula of size (nmθ)O(1) = θO(1) with bottom fan-in at most

6dlog(nm+ 1)e;

(ii) for any polynomial p, the map v 7→ EG−1(v) p is a polynomial on Nnm|≤θ of degree

at most (deg p)/dlog(nm+ 1) + 1e.
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Consider the composition F = (f ◦MP∗m,θ) ◦G. Then

F = (f ◦ (ANDm ◦OR∗θ)) ◦G

= f ◦ ((ANDm ◦OR∗θ, . . . ,ANDm ◦OR∗θ︸ ︷︷ ︸
n

) ◦G),

which by property (i) of G means that F is the composition of f and an AND-OR-

AND circuit H of size (nmθ)O(1) = θO(1) and bottom fan-in 6dlog(nm + 1)e. Hence,

the proof will be complete once we show that

deg±(F, γθ−24d) ≥ ddlog(nm+ 1) + 1e. (5.5.154)

Define r = m2 and R = max{θ, r}, and consider the probability distribution on

{0, 1, 2, . . . , R}nm|≤θ = Nnm|≤θ given by Λ∗(v) = |G−1(v)|/2N . Then Theorem 5.53

constructs a probability distribution Λ on Nnm|≤θ such that

orth((−1)f◦MP∗m,R · Λ) ≥ d, (5.5.155)

Λ ≥ γθ−24d Λ∗. (5.5.156)

In view of R ≥ θ, inequality (5.5.155) can be restated as

orth((−1)f◦MP∗m,θ · Λ) ≥ d. (5.5.157)

Define

λ =
∑

v∈Nnm|≤θ

Λ(v) ·
1G−1(v)

|G−1(v)|
,
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where 1G−1(v) denotes as usual the characteristic function of the set G−1(v). Clearly,

λ is a probability distribution on {0, 1}N . Moreover,

λ ≥ γθ−24d
∑

v∈Nnm|≤θ

Λ∗(v) ·
1G−1(v)

|G−1(v)|

= γθ−24d
∑

v∈Nnm|≤θ

|G−1(v)|
2N

·
1G−1(v)

|G−1(v)|

= γθ−24d ·
1{0,1}N

2N
, (5.5.158)

where the first two steps use (5.5.156) and the definition of Λ∗, respectively.

Finally, we examine the orthogonal content of (−1)F · λ. Let p : RN → R be any

polynomial of degree less than ddlog(nm + 1) + 1e. Then by property (ii) of G, the

mapping p∗ : v 7→ EG−1(v) p is a polynomial on Nnm|≤θ of degree less than d. As a

result,

〈(−1)F · λ, p〉 = 〈(−1)(f◦MP∗m,θ)◦G · λ, p〉

=
∑

v∈Nnm|≤θ

∑
G−1(v)

(−1)(f◦MP∗m,θ)◦G · λ · p

=
∑

v∈Nnm|≤θ

(−1)(f◦MP∗m,θ)(v)
∑
G−1(v)

λ · p

=
∑

v∈Nnm|≤θ

(−1)(f◦MP∗m,θ)(v)Λ(v) E
G−1(v)

p

= 〈(−1)f◦MP∗m,θ · Λ, p∗〉

= 0,

where the last step uses (5.5.157) and deg p∗ < d.We conclude that orth((−1)F ·λ) ≥

ddlog(nm+ 1) + 1e, which along with (5.5.158) settles (5.5.154). �
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5.5.7. The smooth threshold degree of AC0. We now construct, for any

ε > 0, a constant-depth circuit f : {0, 1}n → {0, 1} with exp(−n1−ε)-smooth thresh-

old degree Ω(n1−ε). This result may find applications in future work, in addition

to its use in this chapter to obtain a lower bound on the sign-rank of AC0. The

proof proceeds by induction, with the amplification theorem for smooth threshold

degree (Theorem 5.54) applied repeatedly to construct increasingly harder circuits.

To simplify the exposition, we isolate the inductive step in the following lemma.

Lemma 5.55. Let f : {0, 1}n → {0, 1} be a Boolean circuit of size s, depth d, and

smooth threshold degree

deg±

(
f, exp

(
−c′ · n

1−α

logβ n

))
≥ c′′ · n

1−α

logβ n
,

for some real numbers α ∈ [0, 1], β ≥ 0, and c′, c′′ > 0. Then f can be transformed in

polynomial time into a Boolean circuit F : {0, 1}N → {0, 1} on N = Θ(n1+α log2+β n)

variables that has size s + NO(1), depth at most d + 3, bottom fan-in O(log n), and

smooth threshold degree

deg±

(
F, exp

(
−C ′ · N

1
1+α

log
1−α+β
1+α N

))
≥ C ′′ · N

1
1+α

log
1−α+β
1+α N

, (5.5.159)

where C ′, C ′′ > 0 are real numbers that depend on c′, c′′ only. Moreover, if the circuit

for f is monotone with AND gates at the bottom, then the depth of F is at most d+2.

Proof. Let C ≥ 1 be the absolute constant from Theorem 5.53. Apply Theorem 5.54

with

m = dnα logβ ne,

θ = dCmn log(2nm)e,

γ = exp

(
−c′ · n

1−α

logβ n

)
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to obtain a function H : {0, 1}N → {0, 1}n on N = Θ(n1+α log2+β n) variables such

that the composition F = f ◦H satisfies (5.5.159) for some C ′, C ′′ > 0 that depend

only on c′, c′′, and furthermore H is computable by an AND-OR-AND circuit of

polynomial size and bottom fan-in O(logN). Clearly, the composition F = f ◦H is

a circuit of size s+NO(1), depth d+ 3, and bottom fan-in O(logN). Moreover, if the

circuit for f is monotone with AND gates at the bottom level, then the bottom level

of f can be merged with the top level of H to reduce the depth of F = f ◦H to at

most (d+ 3)− 1 = d+ 2. �

We now obtain our lower bounds on the smooth threshold degree of AC0. We present

two incomparable theorems here, both of which apply Lemma 5.55 in a recursive

manner but with different base cases.

Theorem 5.56. Let k ≥ 0 be a given integer. Then there is an (explicitly given)

circuit family {fn}∞n=1, where fn : {0, 1}n → {0, 1} has polynomial size, depth 3k,

bottom fan-in O(log n), and smooth threshold degree

deg±

(
fn, exp

(
−c′ · n1− 1

k+1

log
k(k−1)
2(k+1) n

))
≥ c′′ · n1− 1

k+1

log
k(k−1)
2(k+1) n

(5.5.160)

for some constants c′, c′′ > 0 and all n ≥ 2.

Proof. The proof is by induction on k. The base case k = 0 corresponds to the

family of “dictator” functions x 7→ x1, each of which has 1/2-smooth threshold de-

gree 1 by Fact 2.8. For the inductive step, fix an explicit circuit family {fn}∞n=1 in

which fn : {0, 1}n → {0, 1} has polynomial size, depth 3k, and smooth threshold de-

gree (5.5.160) for some constants c′, c′′ > 0. Then taking α = 1
k+1

and β = k(k−1)
2(k+1)

in

Lemma 5.55 produces an explicit circuit family {Fn}∞n=1 in which Fn : {0, 1}n → {0, 1}
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has polynomial size, depth 3k + 3 = 3(k + 1), and smooth threshold degree

deg±

(
Fn, exp

(
−C ′ · n

k+1
k+2

log
k(k+1)
2(k+2) n

))
≥ C ′′ · n

k+1
k+2

log
k(k+1)
2(k+2) n

for some constants C ′, C ′′ > 0. This completes the inductive step. �

Theorem 5.57. Let k ≥ 1 be a given integer. Then there is an (explicitly given)

circuit family {fn}∞n=1, where fn : {0, 1}n → {0, 1} has polynomial size, depth 3k + 1,

bottom fan-in O(log n), and smooth threshold degree

deg±

(
fn, exp

(
−c′ · n

1− 2
2k+3

log
k2

2k+3 n

))
≥ c′′ · n

1− 2
2k+3

log
k2

2k+3 n
(5.5.161)

for some constants c′, c′′ > 0 and all n ≥ 2.

Proof. As with Theorem 5.56, the proof is by induction on k. For the base case k = 1,

consider the family {gn}∞n=1 in which gn : {0, 1}n → {0, 1} is given by

gn(x) =

bn1/3c∨
i=1

bn2/3c∧
j=1

xi,j.

Then

deg±(gn, 12−bn
1/3c−1) = deg±(MPbn1/3c,bn2/3c, 12−bn

1/3c−1)

≥ cn1/3

for some absolute constant c > 0, where the first step is valid because a function’s

smooth threshold degree remains unchanged when one negates the function or its

input variables, and the second step uses Theorem 5.36. Applying Lemma 5.55 to

the circuit family {gn}∞n=1 with α = 2/3 and β = 0 yields an explicit circuit family

{Gn}∞n=1 in which Gn : {0, 1}n → {0, 1} has polynomial size, depth 2 + 2 = 4, bottom
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fan-in O(log n), and smooth threshold degree

deg±

(
Gn, exp

(
−C ′ · n3/5

log1/5 n

))
≥ C ′′ · n3/5

log1/5 n

for some constants C ′, C ′′ > 0. This new circuit family {Gn}∞n=1 establishes the base

case.

For the inductive step, fix an integer k ≥ 1 and an explicit circuit family {fn}∞n=1 in

which fn : {0, 1}n → {0, 1} has polynomial size, depth 3k + 1, and smooth threshold

degree (5.5.161) for some constants c′, c′′ > 0. Applying Lemma 5.55 with α = 2/(2k+

3) and β = k2/(2k+3) yields an explicit circuit family {Fn}∞n=1, where Fn : {0, 1}n →

{0, 1} has polynomial size, depth (3k+ 1) + 3 = 3(k+ 1) + 1, bottom fan-in O(log n),

and smooth threshold degree

deg±

(
Fn, exp

(
−C ′′′ · n

2k+3
2k+5

log
(k+1)2

2k+5 n

))
≥ C ′′′′ · n

2k+3
2k+5

log
(k+1)2

2k+5 n

for some constants C ′′′, C ′′′′ > 0. This completes the inductive step. �

5.5.8. The sign-rank of AC0. We have reached our main result on the sign-

rank and unbounded-error communication complexity of constant-depth circuits. The

proof amounts to lifting, by means of Theorem 3.11, the lower bounds on the smooth

threshold degree in Theorems 5.56 and 5.57 to sign-rank lower bounds.

Theorem 5.58. Let k ≥ 1 be a given integer. Then there is an (explicitly given)

Boolean circuit family {Fn}∞n=1, where Fn : {0, 1}n × {0, 1}n → {0, 1} has polynomial

size, depth 3k, bottom fan-in O(log n), sign-rank

rk±(Fn) = exp
(

Ω
(
n1− 1

k+1 · (log n)−
k(k−1)
2(k+1)

))
, (5.5.162)
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and unbounded-error communication complexity

UPP(Fn) = Ω
(
n1− 1

k+1 · (log n)−
k(k−1)
2(k+1)

)
. (5.5.163)

Proof. Theorem 5.56 constructs a circuit family {fn}∞n=1 in which fn : {0, 1}n → {0, 1}

has polynomial size, depth 3k, bottom fan-in O(log n), and smooth threshold de-

gree (5.5.160) for some constants c′, c′′ > 0 and all n ≥ 2. Abbreviate m =

2dexp(4c′/c′′)e. For any n ≥ m, define Fn = fbn/mc ◦ORm ◦AND2. Then (5.5.162) is

immediate from (5.5.160) and Theorem 3.11. Combining (5.5.163) with Theorem (3.9)

settles (5.5.163).

It remains to analyze the circuit complexity of Fn.We defined Fn formally as a circuit

of depth 3k+ 2 in which the bottom four levels have fan-ins nO(1), O(log n), 2m, and

2, in that order. Since m is a constant independent of n, these four levels can be

computed by a circuit of polynomial size, depth 2, and bottom fan-in O(log n). This

optimization reduces the depth of Fn to (3k + 2) − 4 + 2 = 3k while keeping the

bottom fan-in at O(log n). �

We now similarly lift Theorem 5.57 to a lower bound on sign-rank and unbounded-

error communication complexity.

Theorem 5.59. Let k ≥ 1 be a given integer. Then there is an (explicitly given)

Boolean circuit family {Fn}∞n=1, where Fn : {0, 1}n × {0, 1}n → {0, 1} has polynomial

size, depth 3k + 1, bottom fan-in O(log n), sign-rank

rk±(Fn) = exp
(

Ω
(
n1− 2

2k+3 · (log n)−
k2

2k+3

))
,

and unbounded-error communication complexity

UPP(Fn) = Ω
(
n1− 2

2k+3 · (log n)−
k2

2k+3

)
.
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Proof. The proof is analogous to that of Theorem 5.58, with the only difference that

the appeal to Theorem 5.56 should be replaced with an appeal to Theorem 5.57. �

Theorems 5.58 and 5.59 settle Theorems 5.2, 5.3, and 5.5 in the introduction.

5.6. A dual object for OR

The purpose of this section is to prove Theorem 5.17, which gives a dual polynomial for

the OR function with a number of additional properties. The treatment here closely

follows earlier work by Špalek [137], Bun and Thaler [34, 38, 33], and Sherstov [122,

124]. We start with a well-known binomial identity [68].

Fact 5.60. For every univariate polynomial p of degree less than n,

n∑
t=0

(−1)t
(
n

t

)
p(t) = 0.

The next lemma constructs a dual polynomial for OR that has the sign behavior

claimed in Theorem 5.17 but may lack some of the metric properties. The lemma is

an adaptation of [122, Lemma A.2].

Lemma 5.61. Let ε be given, 0 < ε < 1. Then for some constant c = c(ε) ∈ (0, 1)

and every integer n ≥ 1, there is an (explicitly given) function ω : {0, 1, 2, . . . , n} → R

such that

ω(0) >
1− ε

2
· ‖ω‖1, (5.6.1)

|ω(t)| ≤ 1

ct2 2ct/
√
n
· ‖ω‖1 (t = 1, 2, . . . , n), (5.6.2)

(−1)tω(t) ≥ 0 (t = 0, 1, 2, . . . , n), (5.6.3)

orthω ≥ c
√
n. (5.6.4)
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Remark 5.62. It is helpful to keep in mind that properties (5.6.1)–(5.6.4) are logically

monotonic in c. In other words, establishing these properties for a given constant c > 0

also establishes them for all smaller positive constants.

Proof of Lemma 5.61. Let ∆ = 8d1/εe+ 3. If n ≤ ∆, the requirements of the lemma

hold for the function ω : (0, 1, 2, 3 . . . , n) 7→ (1,−1, 0, 0, . . . , 0) and all c ∈ (0, 1/∆]. In

what follows, we treat the complementary case n > ∆.

Define d = b
√
n/∆c and let S = {1, ∆+1

2
} ∪ {i2∆ : i = 0, 1, 2, . . . , d}, so that S ⊆

{0, 1, 2, . . . , n}. Consider the function ω : {0, 1, 2, . . . , n} → R given by

ω(t) =
(−1)n+t+|S|+1

n!

(
n

t

) ∏
i=0,1,2,...,n:

i/∈S

(t− i).

Fact 5.60 implies that

orthω > d+ 1

≥
√
n

∆
. (5.6.5)

A routine calculation reveals that

ω(t) =

(−1)|{i∈S:i<t}|∏
i∈S\{t}

1
|t−i| if t ∈ S,

0 otherwise.
(5.6.6)
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It follows that

ω(0)

|ω(1)|
=

∆− 1

∆ + 1

d∏
i=1

i2∆− 1

i2∆

≥ 1− 2

∆ + 1
−

d∑
i=1

1

i2∆

> 1− 2

∆ + 1
− 1

∆

∞∑
i=1

1

i2

> 1− 4

∆
. (5.6.7)

An analogous application of (5.6.6) shows that

|ω(∆+1
2

)|
|ω(0)|

=
∆+1

2
∆+1

2
· (∆+1

2
− 1)

∆dd! d!

(∆− ∆+1
2

) · 1
2
∆d−1(d− 1)! (d+ 1)!

=
8∆d

(∆− 1)2(d+ 1)

≤ 8∆

(∆− 1)2
. (5.6.8)

264



Finally, for i = 1, 2, . . . , d,

|ω(i2∆)|
|ω(0)|

=
∆+1

2

(i2∆− 1)(i2∆− ∆+1
2

)
· d! d! ∆d

1
2
· (d− i)! (d+ i)! ∆d

≤ 2(∆ + 1)

i4(∆− 1)2
· d! d!

(d− i)! (d+ i)!

=
2(∆ + 1)

i4(∆− 1)2
· d

d+ i
· d− 1

d+ i− 1
· · · · · d− i+ 1

d+ 1

≤ 2(∆ + 1)

i4(∆− 1)2
·
(

1− i

d+ i

)i
≤ 2(∆ + 1)

i4(∆− 1)2
· exp

(
− i2

d+ i

)
≤ 2(∆ + 1)

i4(∆− 1)2
· exp

(
− i

2

2d

)
≤ 2(∆ + 1)

i4(∆− 1)2
· exp

(
− i2

2
√
n/∆

)
. (5.6.9)

Now,

‖ω‖1

ω(0)
= 1 +

|ω(1)|
ω(0)

+
|ω(∆+1

2
)|

ω(0)
+

d∑
i=1

|ω(i2∆)|
ω(0)

≤ 1 +

(
1− 4

∆

)−1

+
8∆

(∆− 1)2
+
∞∑
i=1

2(∆ + 1)

i4(∆− 1)2

= 1 +

(
1− 4

∆

)−1

+
8∆

(∆− 1)2
+

π4(∆ + 1)

45(∆− 1)2

≤ 2

1− 8
∆

<
2

1− ε
, (5.6.10)

where the second step uses (5.6.7)–(5.6.9), and the last step substitutes the definition

of ∆. Now (5.6.1) follows from (5.6.10). Moreover, for c = c(∆) > 0 small enough,
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(5.6.4) follows from (5.6.5), whereas (5.6.2) follows from (5.6.9) and the fact that ω

vanishes outside the union {1, ∆+1
2
} ∪ {i2∆ : i = 0, 1, 2, . . . , d}.

It remains to verify that ω has the desired sign behavior. Since ω vanishes outside

S, the requirement (5.6.3) holds trivially at those points. For t ∈ S, it follows from

(5.6.6) that

sgnω(1) = −1,

sgnω
(

∆+1
2

)
= 1,

sgnω(i2∆) = (−1)i, i = 0, 1, 2, . . . , d.

Since ∆ ∈ 4Z+ 3 by definition, we conclude that sgnω(t) = (−1)t for all t ∈ S. This

settles (5.6.3) and completes the proof. �

We have reached the main result of this section.

Theorem (restatement of Theorem 5.17). Let 0 < ε < 1 be given. Then for some

constants c′, c′′ ∈ (0, 1) and all integers N ≥ n ≥ 1, there is an (explicitly given)

function ψ : {0, 1, 2, . . . , N} → R such that

ψ(0) >
1− ε

2
, (5.6.11)

‖ψ‖1 = 1, (5.6.12)

orthψ ≥ c′
√
n, (5.6.13)

sgnψ(t) = (−1)t, t = 0, 1, 2, . . . , N, (5.6.14)

|ψ(t)| ∈
[

c′

(t+ 1)2 2c′′t/
√
n
,

1

c′(t+ 1)2 2c′′t/
√
n

]
, t = 0, 1, 2, . . . , N. (5.6.15)

Proof. The degenerate case N = 1 holds for the function ω : (0, 1) 7→ (1/2,−1/2) and

all c′, c′′ ∈ (0, 1/4). In the rest of the proof, we treat the complementary case N ≥ 2.
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For some sufficiently small constant c ∈ (0, 1/4) and all n ≥ 1, Lemma 5.61 and

Remark 5.62 ensure the existence of a function ω : {0, 1, 2, . . . , dn/2e} → R such that

‖ω‖1 = 1, (5.6.16)

ω(0) >
1

2

(
1− ε

6

)
, (5.6.17)

|ω(t)| ≤ 1

ct2 2ct/
√
n

(t = 1, 2, . . . , dn/2e), (5.6.18)

(−1)tω(t) ≥ 0 (t = 0, 1, 2, . . . , dn/2e), (5.6.19)

orthω ≥ c
√
n. (5.6.20)

For convenience, extend ω to all of Z by defining it to be zero outside its original

domain. Define Ψ: {0, 1, 2, . . . , N} → R by

Ψ(t) = ω(t) + δ

N−dn/2e∑
i=1

(−1)i

i2 2ci/
√
n
ω(t− i)

+
N∑

i=N−dn/2e+1

(−1)i

i2 2ci/
√
n
ω(−t+ i)

 ,

where

δ =
5ε

π2(1− ε)
.

By (5.6.20) and Proposition 5.7(i),

orth Ψ ≥ c
√
n. (5.6.21)
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We now move on to metric properties of Ψ. Multiplying the defining equation for Ψ

on both sides by (−1)t and applying (5.6.19), we arrive at

(−1)tΨ(t) = |ω(t)|+ δ

N−dn/2e∑
i=1

|ω(t− i)|
i2 2ci/

√
n

+
N∑

i=N−dn/2e+1

|ω(−t+ i)|
i2 2ci/

√
n

 ,

t = 0, 1, 2, . . . , N. (5.6.22)

Summing over t gives

‖Ψ‖1 = ‖ω‖1 + δ

N∑
i=1

1

i2 2ci/
√
n
‖ω‖1

= 1 + δ
N∑
i=1

1

i2 2ci/
√
n

∈

[
1, 1 + δ

∞∑
i=1

1

i2

]

=

[
1,

6− ε
6(1− ε)

]
, (5.6.23)

where the second step uses (5.6.16). We also have

Ψ(0) ≥ ω(0)

>
6− ε

12
, (5.6.24)

where the first and second steps use (5.6.22) and (5.6.17), respectively.
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We now estimate |Ψ(t)| for each t = 1, 2, . . . , N. For a lower bound, we have

|Ψ(t)| = |ω(t)|+ δ

N−dn/2e∑
i=1

|ω(t− i)|
i2 2ci/

√
n

+
N∑

i=N−dn/2e+1

|ω(−t+ i)|
i2 2ci/

√
n


≥ δ · |ω(0)|

t2 2ct/
√
n

≥ 5ε

π2(1− ε)
· 6− ε

12
· 1

t2 2ct/
√
n
, (5.6.25)

where the first and last steps use (5.6.22) and (5.6.17), respectively. The upper bound

on |Ψ(t)| is somewhat more technical. To begin with, we have the following bound

for every positive integer t:

t−1∑
i=1

1

(t− i)2 i2
=

t−1∑
i=1

1

max{(t− i)2, i2} min{(t− i)2, i2}

≤ 1

(t/2)2

t−1∑
i=1

1

min{(t− i)2, i2}

≤ 1

(t/2)2
· 2

∞∑
i=1

1

i2

=
4π2

3t2
. (5.6.26)

Continuing,

∞∑
i=1

|ω(t− i)|
i2 2ci/

√
n

=
|ω(0)|
t2 2ct/

√
n

+
t−1∑
i=1

|ω(t− i)|
i2 2ci/

√
n

≤ 1

t2 2ct/
√
n

+
t−1∑
i=1

1

c(t− i)2 i2 2ct/
√
n

≤ 1

t2 2ct/
√
n

(
1 +

4π2

3c

)
, (5.6.27)
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where the second step uses (5.6.16) and (5.6.18), and the third step substitutes the

bound from (5.6.26). Analogously,

∞∑
i=1

|ω(−t+ i)|
i2 2ci/

√
n

=
|ω(0)|
t2 2ct/

√
n

+
∞∑

i=t+1

|ω(−t+ i)|
i2 2ci/

√
n

≤ 1

t2 2ct/
√
n

+
∞∑

i=t+1

1

c(t− i)2 i2 2ci/
√
n

≤ 1

t2 2ct/
√
n

(
1 +

∞∑
i=t+1

1

c(t− i)2

)

≤ 1

t2 2ct/
√
n

(
1 +

π2

6c

)
, (5.6.28)

where the second step uses (5.6.16) and (5.6.18). Now for every integer t ≥ 1,

|Ψ(t)| ≤ |ω(t)|+ δ

(
∞∑
i=1

|ω(t− i)|
i2 2ci/

√
n

+
∞∑
i=1

|ω(−t+ i)|
i2 2ci/

√
n

)

≤ 1

ct2 2ct/
√
n

(
1 + 2cδ +

4π2δ

3
+
π2δ

6

)
, (5.6.29)

where the first step is immediate from the defining equation for Ψ, and the second step

uses (5.6.18), (5.6.27), and (5.6.28). To complete the proof, let ψ : {0, 1, 2, . . . , N} →

R be given by ψ = Ψ/‖Ψ‖1. Then for a small enough constant c′ = c′(c, ε, δ) > 0

and c′′ = c, properties (5.6.11)–(5.6.15) follow directly from (5.6.21)–(5.6.25) and

(5.6.29). �

5.7. Sign-rank and smooth threshold degree

The purpose of this section is to prove Theorem 3.11, implicit in [117, 106]. We

closely follow the treatment in those earlier papers. Sections 5.7.1–5.7.2 cover neces-

sary technical background, followed by the proof proper in Section 5.7.3.
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5.7.1. Forster’s bound. The spectral norm of a real matrix A = [Axy]x∈X,y∈Y

is given by

‖A‖ = max
v∈R|Y |, ‖v‖2=1

‖Av‖2,

where ‖ · ‖2 is the Euclidean norm on vectors. The first strong lower bound on the

sign-rank of an explicit matrix was obtained by Forster [53], who proved that

rk±(A) ≥
√
|X| |Y |
‖A‖

for any matrix A = [Axy]x∈X,y∈Y with ±1 entries. Forster’s result has seen a number of

generalizations, including the following theorem due to Forster et al. [54, Theorem 3].

Theorem 5.63 (Forster et al.). Let A = [Axy]x∈X,y∈Y be a real matrix without zero

entries. Then

rk±(A) ≥
√
|X| |Y |
‖A‖

min
x,y
|Axy|.

5.7.2. Spectral norm of pattern matrices. Pattern matrices were introduced

in [114, 116] and proved useful in obtaining strong lower bounds on communication

complexity. Relevant definitions and results from [116] follow. Let n and N be

positive integers with n | N. Partition {1, 2, . . . , N} into n contiguous blocks, each

with N/n elements:

{1, 2, . . . , N} =

{
1, 2, . . . ,

N

n

}
∪
{
N

n
+ 1, . . . ,

2N

n

}
∪ · · · ∪

{
(n− 1)N

n
+ 1, . . . , N

}
.

Now, let V(N, n) denote the family of subsets V ⊆ {1, 2, . . . , N} that have exactly one

element in each of these blocks (in particular, |V | = n). Clearly, |V(N, n)| = (N/n)n.

For a function φ : {0, 1}n → R, the (N, n, φ)-pattern matrix is the real matrix A given
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by

A =
[
φ(x|V ⊕ w)

]
x∈{0,1}N , (V,w)∈V(N,n)×{0,1}n

.

In words, A is the matrix of size 2N by (N/n)n2n whose rows are indexed by strings

x ∈ {0, 1}N , whose columns are indexed by pairs (V,w) ∈ V(N, n)×{0, 1}n, and whose

entries are given by Ax,(V,w) = φ(x|V ⊕ w). We will need the following expression for

the spectral norm of a pattern matrix [116, Theorem 4.3].

Theorem 5.64 (Sherstov). Let φ : {0, 1}n → R be given. Let A be the (N, n, φ)-

pattern matrix. Then

‖A‖ =

√
2N+n

(
N

n

)n
max

S⊆{1,2,...,n}

{
|φ̂(S)|

( n
N

)|S|/2}
.

5.7.3. Proof of Theorem 3.11. We are now in a position to prove Theo-

rem 3.11. We will derive it from the following more general result, stated in terms of

pattern matrices.

Theorem 5.65. Let f : {0, 1}n → {0, 1} be given. Suppose that deg±(f, γ) ≥ d, where

γ and d are positive reals. Then for any integer T ≥ 1, the (Tn, n, (−1)f )-pattern

matrix has sign-rank at least γT d/2.

Proof. By the definition of smooth threshold degree, there is a probability distribution

µ on {0, 1}n such that

µ(x) ≥ γ 2−n, x ∈ {0, 1}n, (5.7.1)

orth((−1)f · µ) ≥ d. (5.7.2)
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Abbreviate φ = (−1)f · µ. Let F and Φ denote the (Tn, n, (−1)f )- and (Tn, n, φ)-

pattern matrices, respectively. By (5.2.3) and (5.7.2),

φ̂(S) = 0, |S| < d. (5.7.3)

The remaining Fourier coefficients of φ can be bounded using Proposition 2.1:

|φ̂(S)| ≤ 2−n, S ⊆ {1, 2, . . . , n}. (5.7.4)

Now

rk±(F ) = rk±(Φ)

≥
√

2Tn+n T n

‖Φ‖
· γ 2−n

=
γ 2−n

maxS{|φ̂(S)|T−|S|/2}

≥ γT d/2,

where the first step is valid because F and Φ have the same sign pattern; the second

step uses (5.7.1) and Theorem 5.63; the third step applies Theorem 5.64; and the

final step substitutes the upper bounds from (5.7.3) and (5.7.4). �

We have reached the main result of this section.

Theorem (restatement of Theorem 3.11). Let f : {0, 1}n → {0, 1} be given. Suppose

that deg±(f, γ) ≥ d, where γ and d are positive reals. Fix an integer m ≥ 2 and define

F : {0, 1}mn × {0, 1}mn → {0, 1} by F (x, y) = f ◦ORm ◦ AND2. Then

rk±(F ) ≥ γ
⌊m

2

⌋d/2
.

Proof. The result is immediate from Theorem 5.65 since the (bm/2cn, n, (−1)f )-

pattern matrix is a submatrix of [(−1)F (x,y)]x,y. �
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CHAPTER 6

Randomized and quantum communication complexity

In this chapter, we discuss our near-optimal separation of randomized and quantum

communication complexity. Our approach is to first prove an optimal separation in

the query model. Then we use the standard machinery to “lift” the separation from

the query model to the communication model.

6.1. Introduction

Understanding the relative power of quantum and classical computing is of basic

importance in theoretical computer science. This question has been studied most

actively in the query model, which is tractable enough to allow unconditional lower

bounds yet rich enough to capture most of the known quantum algorithms. Illustra-

tive examples include the quantum algorithms of Deutsch and Jozsa [50], Bernstein

and Vazirani [18], Grover [69], and Shor’s period-finding [130]. In the query model,

the task is to evaluate a fixed function f on an unknown n-bit input x. In the classical

setting, query algorithms are commonly referred to as decision trees. A decision tree

accesses the input one bit at a time, choosing the bits to query in adaptive fashion.

The objective is to determine f(x) by querying as few bits as possible. The minimum

number of queries needed to determine f(x) in the worst case is called the query

complexity of f . The quantum model is a far-reaching generalization of the classical

decision tree whereby all bits can be queried in superposition with a single query.

The catch is that the outcomes of those queries are then also in superposition, and it
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is not clear a priori whether quantum query algorithms are more powerful than de-

cision trees. The focus of our work is on the bounded-error regime, where the query

algorithm (quantum or classical) is allowed to err with small constant probability on

any given input.

The comparative power of randomized and quantum query algorithms has been stud-

ied for more than two decades. In pioneering work, Deutsch and Jozsa [50] gave a

quantum query algorithm that solves, with a single query, a problem on n bits that

any deterministic decision tree needs at least n/2 queries to solve. Unfortunately,

this separation does not apply to the more subtle, bounded-error setting. This was

addressed in follow-up work by Simon [131], who exhibited a problem with bounded-

error quantum query complexity O(log2 n) and randomized query complexity Ω(
√
n).

These are striking examples of the computational advantages afforded by the quantum

model.

6.1.1. Forrelation and rorrelation. The above results leave us with a fun-

damental question: what is the largest possible separation between bounded-error

quantum and randomized query complexity, for a problem with n-bit input? This

question was raised by Buhrman et al. [30] and, a decade later, by Aaronson and

Ambainis [2], who presented it as being essential to understanding the phenomenon

of quantum speedups. Toward this goal, the authors of [2] obtained both positive and

negative results. They showed, for every constant t, that every quantum algorithm

with t queries can be converted to a randomized decision tree of cost O(n1−1/2t). In

particular, this rules out an O(1) versus Ω(n) separation. In the opposite direction,

Aaronson and Ambainis exhibited a problem that can be solved to bounded error

with a single quantum query but has randomized query complexity Ω̃(
√
n). They left

open the challenge of obtaining a separation of O(1) versus Ω(nα) for some α > 1/2.
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In more detail, Aaronson and Ambainis [2] introduced and studied the k-fold for-

relation problem. The input to the problem is a k-tuple of vectors x1, x2, . . . , xk ∈

{−1, 1}n, where n is a power of 2. Define

φn,k(x1, x2, . . . , xk) =
1

n
1ᵀDx1HDx2HDx3H · · ·HDxk1, (6.1.1)

where 1 is the all-ones vector, H is the Hadamard transform matrix of order n,

and Dxi is the diagonal matrix with the vector xi on the diagonal. Since each of the

linear transformationsH,Dx1 , Dx2 , . . . , Dxn preserves Euclidean length, it follows that

|φn,k(x1, x2, . . . , xk)| ≤ 1.Given x1, x2, . . . , xk, the forrelation problem is to distinguish

between the cases |φn,k(x1, x2, . . . , xk)| ≤ α and φn,k(x1, x2, . . . , xk) ≥ β, where the

problem parameters 0 < α < β < 1 are suitably chosen constants. Equation (6.1.1)

directly gives a quantum algorithm that solves the forrelation problem with bounded

error and query cost k, where the k queries correspond to the k diagonal matrices.

The cost can be further reduced to dk/2e by viewing (6.1.1) as the inner product

of two vectors obtained by dk/2e and bk/2c applications, respectively, of diagonal

matrices [2]. Aaronson and Ambainis complemented this with an Ω̃(
√
n) lower bound

on the randomized query complexity of the forrelation problem for k = 2, hence the

1 versus Ω̃(
√
n) separation mentioned above.

Building on the work of Aaronson and Ambainis [2], last year Tal [135] gave an

improved separation of O(1) versus Ω(n2/3−ε) for bounded-error quantum and ran-

domized query complexities, for any constant ε > 0. For this, Tal replaced (6.1.1)

with the more general quantity

φn,k,U(x1, x2, . . . , xk) =
1

n
1ᵀDx1UDx2UDx3U · · ·UDxk1, (6.1.2)

where U is an arbitrary but fixed orthogonal matrix. On input x1, x2, . . . , xk ∈

{−1, 1}n, the author of [135] considered the problem of distinguishing between the
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cases |φn,k,U(x1, x2, . . . , xk)| ≤ 2−k−1 and φn,k,U(x1, x2, . . . , xk) ≥ 2−k. This problem is

referred to in [135] as the k-fold rorrelation problem with respect to U. The quantum

algorithm of Aaronson and Ambainis, adapted to the arbitrary choice of U, solves

this new problem with dk/2e queries and advantage Ω(2−k) over random guessing,

which counts as a bounded-error algorithm for any constant k. On the other hand,

Tal [135] proved that the randomized query complexity of the k-fold rorrelation

problem for uniformly random U is Ω(n2(k−1)/(3k−1)/k log n) with high probability.

While this is weaker than Aaronson and Ambainis’s bound for k = 2, setting k to a

large constant gives a separation of O(1) versus Ω(n2/3−ε) for bounded-error quantum

and randomized query complexity for any constant ε > 0.

6.1.2. Our results. Prior to our work, Tal’s separation of O(1) versus Ω(n2/3−ε)

was the strongest known, and Aaronson and Ambainis’s challenge of obtaining an

O(1) versus Ω(n1−ε) separation remained open. The main contribution of our work

is to resolve this question.

Separations for partial functions. In what follows, we let fn,k,U denote the k-fold

rorrelation problem with respect to U. We prove:

Theorem 6.1. Let n and k be positive integers, with k ≤ 1
3

log n− 1. Let U ∈ Rn×n

be a uniformly random orthogonal matrix. Then with probability 1− o(1),

Rdt
1
2
−γ(fn,k,U) = Ω

(
γ2

k
· n1− 1

k

(log n)2− 1
k

)
(6.1.3)

for all 0 ≤ γ ≤ 1/2.

For k = 2, this lower bound is the same as Aaronson and Ambainis’s lower bound

for the forrelation problem (which is fn,2,H in our notation). For k = 3 already,

Theorem 6.1 is a polynomial improvement on all previous work, including Tal’s recent
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result [135]. Theorem 6.1 is essentially tight for all k, both even and odd, due to

the matching upper bound Ok(n
1−1/k) [2, 27] . Since fn,k,U has an efficient quantum

protocol for every U (see Section 6.5.2 for details), we obtain the following corollary:

Corollary 6.2. Let ε > 0 be given. Then there is a partial Boolean function f on

{−1, 1}n with

Qdt
1/3(f) = O(1),

Rdt
1/3(f) = Ω(n1−ε).

This separation of bounded-error quantum and randomized query complexities is best

possible for all f due to the aforementioned result that every quantum protocol with

k queries can be simulated by a randomized query algorithm of cost O(n1−1/2k). In

particular, Corollary 6.2 shows that the rorrelation problem separates quantum and

randomized query complexity optimally, of all problems f . The following incompara-

ble corollary can be obtained by taking k = k(n) in Theorem 6.1 to be an arbitrarily

slow-growing function, e.g., k = log log log n:

Corollary 6.3. Let α : N → N be any monotone function with α(n) → ∞ as

n→∞. Then there is a partial Boolean function f on {−1, 1}n with

Qdt
1/3(f) ≤ α(n),

Rdt
1/3(f) ≥ n1−o(1).

Again, this quantum-classical separation is best possible since [2, 27] rules out the

possibility of an O(1) versus n1−o(1) gap.

A satisfying probability-theoretic interpretation of our results is that the phenomenon

of quantum-classical gaps is a common one. More precisely, our results show that the
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set of orthogonal matrices U for which fn,k,U does not exhibit a best-possible quantum-

classical separation has Haar measure 0. Prior to our work, this was unknown for any

integer k > 2.

Separation for total functions. Our results so far pertain to partial Boolean func-

tions, whose domain of definition is a proper subset of the Boolean hypercube. For

total Boolean functions, such large quantum-classical gaps are not possible. In a sem-

inal paper, Beals et al. [13] prove that the bounded-error quantum query complexity

of a total function f is always polynomially related to the randomized query complex-

ity of f . A natural question to ask is how large this polynomial gap can be. Grover’s

search [69] shows that the n-bit OR function has bounded-error quantum query com-

plexity Θ(
√
n) and randomized complexity Θ(n). For a long time, this quadratic

separation was believed to be the largest possible. In a surprising result, Aaronson

et al. [3] proved the existence of a total function f with Rdt
1/3(f) = Ω̃(Qdt

1/3(f)2.5).

This was improved by Tal [135] to Rdt
1/3(f) ≥ Qdt

1/3(f)8/3−o(1). We give a polynomially

stronger separation:

Theorem 6.4. There is a function f : {−1, 1}n → {0, 1} with

Rdt
1/3(f) ≥ Qdt

1/3(f)3−o(1).

Theorem 6.4 follows automatically by combining our Corollary 6.3 with the “cheat-

sheet” framework of Aaronson et al. [3]. Specifically, they prove that any partial

function f on n bits that exhibits an no(1) versus n1−o(1) separation for bounded-error

quantum versus randomized query complexity, can be automatically converted into

a total function with Rdt
1/3(f) ≥ Qdt

1/3(f)3−o(1). A recent paper of Aaronson et al. [4]

conjectures that Rdt
1/3(f) = O(Qdt

1/3(f)3) for every total function f, which would mean

that our separation in Theorem 6.4 is essentially optimal. The best current upper
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bound is Rdt
1/3(f) = O(Qdt

1/3(f)4) due to [4], derived there from the breakthrough

result of Huang [72] on the sensitivity conjecture.

Separations for communication complexity. Using standard reductions, our

quantum-classical query separations imply analogous separations for communication

complexity. In more detail, let f be a (possibly partial) Boolean function on {−1, 1}n.

For any communication problem g : {−1, 1}m × {−1, 1}m → {−1, 1}, we let f ◦ g

denote the (possibly partial) communication problem on ({−1, 1}m)n × ({−1, 1}m)n

given by (f ◦ g)(x, y) = f(g(x1, y1), g(x2, y2), . . . , g(xn, yn)). Buhrman, Cleve, and

Wigderson [28] proved that any quantum query algorithm for f gives a quantum

communication protocol for f ◦ g with the same error and approximately the same

cost. Quantitatively,

Qε(f ◦ g) ≤ Qdt
ε (f) ·O(m+ log n), (6.1.4)

where Qε denotes ε-error quantum communication complexity. Reversing this in-

equality has seen a great deal of work, mainly in the classical setting. In light of

query-to-communication lifting, our main results have the following consequences.

Theorem 6.5. Let ε > 0 be given. Then there is a partial Boolean function F on

{−1, 1}N × {−1, 1}N with

Q1/3(F ) = O(logN),

R1/3(F ) = Ω(N1−ε).

Proof. Take f as in Corollary 6.2 and define N = cn log n and F = f ◦ IPc logn. Then

the communication bounds follow from (6.1.4) and (3.2.1), respectively. �

Theorem 6.5 is essentially optimal and a polynomial improvement on previous work.

The best previous quantum-classical separation for communication complexity was
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O(logN) versus Ω(N2/3−ε), implicit in Tal [135] and preceded in turn by other ex-

ponential separations [103, 107, 56]. Similarly, our Corollary 6.3 translates in a

black-box manner to communication complexity:

Theorem 6.6. Let α : N→ N be any monotone function with α = ω(1). Then there

is a partial Boolean function F on {−1, 1}N × {−1, 1}N with

Q1/3(F ) ≤ α(N) logN,

R1/3(F ) ≥ N1−o(1).

Proof. Take f as in Corollary 6.3 and define N = cn log n and F = f ◦ IPc logn. Then

the communication bounds follow from (6.1.4) and (3.2.1), respectively. �

Finally, we obtain the following result for total functions.

Theorem 6.7. There is a function F : {−1, 1}N × {−1, 1}N → {0, 1} with

R1/3(F ) ≥ Q1/3(F )3−o(1).

Proof. The cheatsheet framework [3] ensures that the quantum and classical query

complexities of f in Theorem 6.4 are polynomial in the number of variables n. With

this in mind, we proceed as before, setting N = cn log n and F = f ◦ IPc logn and

applying (6.1.4) and (3.2.1). �

Again, Theorem 6.7 is a polynomial improvement on previous work, the best previous

result being a power of 8/3 separation implicit in [135].

Fourier weight of decision trees. It is straightforward to verify that a uniformly

random input x ∈ ({−1, 1}n)k is with high probability a negative instance of the

rorrelation problem fn,k,U . With this in mind, Tal [135] proves his lower bound for

rorrelation by constructing a probability distribution Dn,k,U that generates positive
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instances of fn,k,U with nontrivial probability yet is indistinguishable from the uniform

distribution by a decision tree T of cost n2/3−O(1/k). His notion of indistinguishability

is based on the Fourier spectrum. Specifically, Tal [135] shows that: (i) the sum of

the absolute values of the Fourier coefficients of T of given order ` does not grow

too fast with `; and (ii) the maximum Fourier coefficient of Dn,k,U of order ` decays

exponentially fast with `. In Tal’s paper, the bound for (ii) is essentially optimal,

whereas the bound for (i) is far from tight. The sum of the absolute values of the

order-` Fourier coefficients of a decision tree T , which we refer to as the `-Fourier

weight of T , is shown in [135] to be at most

c`
√
d`(1 + log kn)`−1, (6.1.5)

where d is the depth of the tree and c ≥ 1 is an absolute constant. This bound is

strong for any constant ` but degrades rapidly as ` grows. In particular, for ` =
√
d

already, (6.1.5) is weaker than the trivial bound
(
d
`

)
. This is a major obstacle since

the indistinguishability proof requires strong bounds for every `. This obstacle is

the reason why Tal’s analysis gives the randomized query lower bound n2/3−O(1/k)

as opposed to the optimal Ω̃(n1−1/k). Tal conjectured that the `-Fourier weight of a

depth-d decision tree is in fact bounded by c`
√(

d
`

)
(1 + log kn)`−1, which is a factor

of
√
`! improvement on (6.1.5) and essentially optimal. We prove his conjecture:

Theorem 6.8. Let T : {−1, 1}n → {0, 1} be a function computable by a decision tree

of depth d. Then

∑
S⊆{1,2,...,n}:
|S|=`

|T̂ (S)| ≤ c`

√(
d

`

)
(1 + log n)`−1, ` = 1, 2, . . . , n,

where c ≥ 1 is an absolute constant.
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It is well known and easy to show that Theorem 6.8 is essentially tight, even for

nonadaptive decision trees [94, Theorem 5.19]. The actual statement that we prove

is more precise and takes into account the density parameter P[T (x) 6= 0]; see The-

orem 6.37 for details. With Theorem 6.8 in hand, all our main results (Theorem 6.1

and its corollaries) follow immediately by combining the new bound on the Fourier

weight of decision trees with Tal’s near-optimal bounds on the individual Fourier

coefficients of Dn,k,U .

Theorem 6.8 is of interest in its own right, independent of its use in this chapter

to obtain optimal quantum-classical separations. The study of the Fourier spectrum

has a variety of applications in theoretical computer science, including circuit com-

plexity, learning theory, pseudorandom generators, and quantum computing. Even

prior to Tal’s work, the `-Fourier weight of decision trees was studied for ` = 1 by

O’Donnell and Servedio [95], who proved the tight O(
√
d) bound and used it to give

a polynomial-time learning algorithm for monotone decision trees. Fourier weight has

been studied for various other classes of Boolean functions, including bounded-depth

circuits, branching programs, low-degree polynomials over finite fields, and functions

with bounded sensitivity; see the recent papers [66, 133, 134, 46, 45] and the

references therein.

6.2. Generalized decision trees

Throughout this chapter, we assume decision trees to be perfect binary trees, with

each internal node having two children and all leaves having the same depth. This

convention is without loss of generality since a decision tree computing a given func-

tion f can be made into a perfect binary tree for f of the same depth, by query-

ing dummy variables as necessary. We denote the variables of a decision tree by

283



x1, x2, . . . , xn ∈ {−1, 1}, and identify the vertices of a decision tree in the natu-

ral manner with strings in {−1, 1}∗. Thus, ε denotes the root of the tree, and a

string v ∈ {−1, 1}k denotes the vertex at depth k reached from the root by follow-

ing the path v1v2 . . . vk. Formally, a decision tree of depth d in Boolean variables

x1, x2, . . . , xn ∈ {−1, 1} is a function T on {−1, 1}≤d with the following two proper-

ties.

(i) One has T (v) ∈ {1, 2, . . . , n} for every v ∈ {−1, 1}≤d−1, with the interpreta-

tion that T (v) is the index of the variable queried at the internal node found

by following the path v = v1v2v3 . . . from the root of the decision tree. We

note that a variable cannot be queried twice on the same path, and therefore

the d numbers T (ε), T (v1), T (v1v2), . . . , T (v1v2 . . . vd−1) are pairwise distinct

for every v ∈ {−1, 1}d−1.

(ii) One has T (v) ∈ R[x1, x2, . . . , xn] for every v ∈ {−1, 1}d, with the inter-

pretation that T (v) is the label of the leaf reached by following the path

v = v1v2 . . . vd from the root of the tree. Thus, every leaf is labeled with a

real-valued polynomial in the input variables x1, x2, . . . , xn. At a given leaf

v ∈ {−1, 1}d, the variables xT (ε), xT (v1), . . . , xT (v1v2...vd−1) have been queried

and therefore have fixed values. For this reason, we require T (v) to be a real

polynomial in variables other than xT (ε), xT (v1), . . . , xT (v1v2...vd−1). We refer to

a leaf v ∈ {−1, 1}d as a nonzero leaf if T (v) is not the zero polynomial. While

we formally allow arbitrary real polynomials, the identity x2
i = xi effectively

forces T (v) for each v ∈ {−1, 1}d to be multilinear.

Our formalism generalizes the traditional notion of a decision tree, where the leaf

labels are restricted to the Boolean constants 0 and 1.
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Proposition 6.9. Let T be a given decision tree of depth d. Then the function

f : {−1, 1}n → R computed by T is given by

f(x) =
∑

v∈{−1,1}d
T (v) ·

d∏
i=1

1 + vixT (v1v2...vi−1)

2
. (6.2.1)

We emphasize that T (v) in this expression is a polynomial in x1, x2, . . . , xn and not

necessarily a constant value. In fact, the norm |||T (v)||| for leaves v is a prominent

quantity in this chapter.

Proof. For an input x ∈ {−1, 1}n and a leaf v ∈ {−1, 1}d, the product

d∏
i=1

1 + vixT (v1v2...vi−1)

2

evaluates to 1 if the input x reaches the leaf v in T , and evaluates to 0 otherwise.

Recall that any given input x reaches precisely one leaf v, and the output of the tree

on x is defined to be the corresponding polynomial T (v) ∈ R[x1, x2, . . . , xn] evaluated

at x. Thus, (6.2.1) evaluates to T (v) where v is the leaf reached by x. �

For a decision tree T of depth d, we let dns(T ) denote the fraction of leaves in T with

nonzero labels:

dns(T ) = P
v∈{−1,1}d

[T (v) 6= 0].

We refer to this quantity as the density of T . Another important complexity measure

is the degree of T, denoted deg(T ) and defined as the maximum of the degrees of the

polynomials T (v) ∈ R[x1, x2, . . . , xn] for v ∈ {−1, 1}d. Recall that the zero polynomial

0 is considered to have degree −∞. For an internal node v ∈ {−1, 1}≤d−1, we let Tv

denote the subtree of T rooted at v. Thus, Tv is the tree of depth d − |v| given by
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Tv(u) = T (vu) for all u ∈ {−1, 1}≤d−|v|. The following fact is straightforward and

well-known.

Fact 6.10. Let T be a given decision tree of degree at most 0. Let f : {−1, 1}n → R

be the function computed by T . Then

P
x∈{−1,1}n

[f(x) 6= 0] = dns(T ).

Proof. Let d be the depth of T . Since T is a perfect binary tree, the fraction of inputs

x ∈ {−1, 1}n that reach any given leaf of T is exactly 2−d. Therefore, the probability

that a random input x ∈ {−1, 1}n reaches a leaf with a nonzero label is precisely the

fraction of leaves with nonzero labels, which is by definition dns(T ). �

We will be working with special classes of trees described by several parameters.

Specifically, we let T (n, d, p, k) denote the set of all trees in n Boolean variables

x1, x2, . . . , xn ∈ {−1, 1} of depth d and density p such that for every leaf v ∈ {−1, 1}d,

the label T (v) is either the zero polynomial 0 or a homogeneous multilinear polynomial

of degree k. We further define T ∗(n, d, p, k) to be the set of all trees T ∈ T (n, d, p, k)

that have the additional property that T (v) ∈ {0} ∪ {±
∏

i∈S xi : S ∈ Pn,k} for every

leaf v ∈ {−1, 1}d. Thus, every nonzero leaf in a tree T ∈ T ∗(n, d, p, k) is labeled with

a signed monomial of degree k.

The Fourier spectrum of decision trees has been studied in several works, as discussed

in the introduction. We will need the following special case of a result due to Tal [135,

Theorem 7.5]. For completeness, we include our proof in Section 6.4.5.

Theorem 6.11 (Tal). Let f : {−1, 1}n → {−1, 0, 1} be given, f 6≡ 0. Define p =

Px∈{−1,1}n [f(x) 6= 0]. Suppose that f can be computed by a depth-d decision tree.
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Then

|||L1 f ||| ≤
(
d

1

)1/2

Cp

√
ln
e

p
,

|||L2 f ||| ≤
(
d

2

)1/2

C2p

√
ln
e

p

√
ln
en

p
,

where C ≥ 1 is an absolute constant.

Tal states his result for functions f : {−1, 1}n → {0, 1} rather than f : {−1, 1}n →

{−1, 0, 1}. But Theorem 6.11 follows immediately by writing f = f+ − f−, where

f+, f− : {−1, 1}n → {0, 1} are the positive and negative parts of f, and applying

Tal’s result separately to f+ and f−.

6.3. Elementary set families

As explained in the introduction, we obtain our Fourier weight bound by combining

the Fourier coefficients of a decision tree into well-structured groups and bounding

the sum of the absolute values in each group. In this section, we lay the combina-

torial groundwork for this result by proving that Pn,k can be efficiently partitioned

into what we call “elementary families.” We start in Section 6.3.1 with some tech-

nical calculations. Section 6.3.2 formally defines elementary families and studies the

associated complexity measure for representing general families as the disjoint union

of elementary parts. Finally, Section 6.3.3 proves that our family of interest Pn,k has

an efficient partition of this form.

6.3.1. A binomial recurrence. Our starting point is a technical calculation

related to the entropy function.
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Lemma 6.12. There is an absolute constant c ≥ 1 such that for all integers k ≥ 1,

k−1∑
i=1

(
k

i

)i/2(
k

k − i

)(k−i)/2
1√

i(k − i)
≤ c

√
2k

k
.

Proof. To begin with,

k−1∑
i=1

(
k

i

)i/2(
k

k − i

)(k−i)/2
1√

i(k − i)

=
k−1∑
i=1

2H(i/k)·k/2√
i(k − i)

≤ 2k/2
k−1∑
i=1

exp

(
−k
(
i

k
− 1

2

)2
)
· 1√

i(k − i)
, (6.3.1)

where the last step uses (2.1.2). Continuing,

dk/4e−1∑
i=1

exp

(
−k
(
i

k
− 1

2

)2
)

1√
i(k − i)

≤
dk/4e−1∑
i=1

exp

(
−k
(
i

k
− 1

2

)2
)

≤
dk/4e−1∑
i=1

e−k/16

<
ke−k/16

4
. (6.3.2)

Symmetrically,

k−1∑
i=b3k/4c+1

exp

(
−k
(
i

k
− 1

2

)2
)

1√
i(k − i)

<
ke−k/16

4
. (6.3.3)
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Finally,

b3k/4c∑
i=dk/4e

exp

(
−k
(
i

k
− 1

2

)2
)

1√
i(k − i)

≤ 4√
3k

b3k/4c∑
i=dk/4e

exp

(
−k
(
i

k
− 1

2

)2
)

≤ 4√
3k

∞∑
i=−∞

exp

(
−k
(
i

k
− 1

2

)2
)

≤ 4√
3k

+
4√
3k

∫ ∞
−∞

exp

(
−k
(
x

k
− 1

2

)2
)
dx

=
4√
3k

+
4
√
π√

3k
. (6.3.4)

Combining (6.3.1)–(6.3.4), we conclude that

k−1∑
i=1

(
k

i

)i/2(
k

k − i

)(k−i)/2
1√

i(k − i)
≤ 2k/2

(
ke−k/16

2
+

4√
3k

+
4
√
π√

3k

)
.

This settles the lemma for a large enough absolute constant c ≥ 1. �

As an application of the previous lemma, we proceed to solve a key recurrence that

we will need to study Pn,k.

Theorem 6.13. Let N : {1, 2, 4, 8, 16, . . .}×Z+ → [0,∞) be any function that satisfies

N(n, k) ≤
(
n

k

)1/2

if min{n, k} ≤ 2,

N(n, k) ≤ 2N
(n

2
, k
)

+
k−1∑
i=1

N
(n

2
, i
)
N
(n

2
, k − i

)
if min{n, k} > 2.

Let c ≥ 1 be the absolute constant from Lemma 6.12. Then for all n, k,

N(n, k) ≤ (2 +
√

2)k−1ck−1

√
k

(n
k

)k/2
. (6.3.5)

289



Proof. The proof of (6.3.5) is by induction on the pair (n, k) ∈ {1, 2, 4, 8, 16, . . .}×Z+.

For min{n, k} ≤ 2, the claimed bound (6.3.5) is a weakening of N(n, k) ≤
(
n
k

)1/2. This

establishes the base case. For the inductive step, fix arbitrary n ∈ {4, 8, 16, 32, . . .}

and k ≥ 3. Abbreviate α = 2 +
√

2. Then

N(n, k) ≤ 2N
(n

2
, k
)

+
k−1∑
i=1

N
(n

2
, i
)
N
(n

2
, k − i

)
≤ 2 · (αc)k−1

√
k

( n
2k

)k/2
+

k−1∑
i=1

(αc)i−1

√
i

( n
2i

)i/2
· (αc)k−i−1

√
k − i

(
n

2(k − i)

)(k−i)/2

= 2 · (αc)k−1

√
k

( n
2k

)k/2
+ (αc)k−2

( n
2k

)k/2 k−1∑
i=1

1√
i(k − i)

(
k

i

)i/2(
k

k − i

)(k−i)/2

≤ 2 · (αc)k−1

√
k

( n
2k

)k/2
+

(αc)k−2c√
k

(n
k

)k/2
≤ 1√

2
· (αc)k−1

√
k

(n
k

)k/2
+

(αc)k−2c√
k

(n
k

)k/2
=

(αc)k−1

√
k

(n
k

)k/2
,

where the second step applies the inductive hypothesis; the fourth step appeals to

Lemma 6.12; and the fifth step uses k ≥ 3. This completes the inductive step and

thereby settles (6.3.5). �

6.3.2. The partition measure. For set families A,B ⊆ P(Z), we define A ∗

B = {A ∪ B : A ∈ A, B ∈ B}. We collect basic properties of this operation in the

proposition below.

Proposition 6.14. Let A,B, C ⊆ P(Z) be given. Then:
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(i) A ∗∅ = ∅ ∗ A = ∅;

(ii) A ∗ {∅} = {∅} ∗ A = A;

(iii) (A ∗ B) ∗ C = A ∗ (B ∗ C);

(iv) A ∗ B = B ∗ A;

(v) (A ∪ B) ∗ C = (A ∗ C) ∪ (B ∗ C).

Proof. All properties are immediate from the definition of the ∗ operation. �

We define an integer interval to be any finite set whose elements are consecutive

integers, namely, {i, i + 1, i + 2, . . . , j} for some i, j ∈ Z. As a special case, this

includes the empty interval ∅. An elementary family is any family of the form

E =

(
I1

k1

)
∗
(
I2

k2

)
∗ · · · ∗

(
I`
k`

)
, (6.3.6)

where ` is a positive integer, I1, I2, . . . , I` are pairwise disjoint integer intervals, and

k1, k2, . . . , k` ∈ {0, 1, 2}. Trivial examples of elementary families are
(∅

0

)
= {∅} and(∅

1

)
= ∅. Another example of an elementary family is the singleton family {A}

for any nonempty finite set A ⊆ Z, using {A} =
({a1}

1

)
∗
({a2}

1

)
∗ · · · ∗

({a`}
1

)
where

a1 < a2 < · · · < a` are the distinct elements of A. We now define a partition measure

that captures how efficiently a family can be partitioned into elementary families.

Definition 6.15 (Partition measure π). For any family A ⊆ P({1, 2, . . . , n}), define

π(A) to be the minimum

N∑
i=1

|Ei|1/2 (6.3.7)

over all integers N and all elementary families E1, E2, . . . , EN that are pairwise disjoint

and satisfy E1 ∪ E2 ∪ · · · ∪ EN = A.
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Straight from the definition,

π(∅) = 0,

π({∅}) = 1.

More generally,

|A|1/2 ≤ π(A) ≤ |A| (6.3.8)

for every A ⊆ P({1, 2, . . . , n}). The upper bound here corresponds to the trivial

partition A =
⋃
A∈A{A}. The lower bound holds because (6.3.7) is no smaller than

(
∑
|Ei|)1/2 = |A|1/2. The following four lemmas will be useful to us in analyzing the

partition measure for families of interest.

Lemma 6.16. Let A,B ⊆ P({1, 2, . . . , n}) be given with A ∩ B = ∅. Then

π(A ∪ B) ≤ π(A) + π(B).

Proof. If A = ∅ or B = ∅, the claim is trivial. In the complementary case, let

A = E1 ∪ · · · ∪ EN and B = E ′1 ∪ · · · ∪ E ′N ′ be partitions of A and B, respectively, into

elementary families. Then A∪ B = (E1 ∪ · · · ∪ EN) ∪ (E ′1 ∪ · · · ∪ E ′N ′) is a partition of

A ∪ B into elementary families. �

Lemma 6.17. Let A ⊆ P({1, 2, . . . ,m}) and B ⊆ P({m+ 1,m+ 2, . . . , n}) be given,

for some 1 ≤ m < n. Then

π(A ∗ B) ≤ π(A) π(B).

Proof. If A = ∅ or B = ∅, we have A ∗ B = ∅ by Proposition 6.14 and therefore

π(A∗B) = 0. In the complementary case, let A = E1∪· · ·∪EN and B = E ′1∪· · ·∪E ′N ′

be partitions of A and B, respectively, into elementary families for which π(A) and
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π(B) are achieved. Then

A ∗ B =

(
N⋃
i=1

Ei

)
∗ B =

N⋃
i=1

(Ei ∗ B) =
N⋃
i=1

N ′⋃
j=1

(Ei ∗ E ′j), (6.3.9)

where the last two steps use the distributivity and commutativity properties in

Proposition 6.14. For any elementary families Ei ⊆ P({1, 2, . . . ,m}) and E ′j ⊆

P({m + 1,m + 2, . . . , n}), the family Ei ∗ E ′j ⊆ P({1, 2, . . . , n}) is also elementary,

with |Ei ∗ E ′j| = |Ei| |E ′j|. Since all unions in (6.3.9) are disjoint, we obtain

π(A ∗ B) ≤
N∑
i=1

N ′∑
j=1

|Ei ∗ E ′j|1/2 =
N∑
i=1

N ′∑
j=1

|Ei|1/2|E ′j|1/2 = π(A)π(B). �

For a set A ⊆ Z and an integer x, we define A + x = {a + x : a ∈ A}. Analogously,

for a family A ⊆ P(Z), we define A + x = {A + x : A ∈ A}. As one would expect,

the partition measure is invariant under translation by an integer.

Lemma 6.18. Let A ⊆ P({1, 2, . . . , n}) be given. Then for all x ∈ N,

π(A) = π(A+ x).

Proof. Consider an elementary family E of the form (6.3.6), where I1, I2, . . . , I` are

pairwise disjoint integer intervals and k1, k2, . . . , k` ∈ {0, 1, 2}. Then

E + x =

(
I1 + x

k1

)
∗
(
I2 + x

k2

)
∗ · · · ∗

(
I` + x

k`

)
is also an elementary family because the translated integer intervals I1 + x, I2 +

x, . . . , I` + x are pairwise disjoint. Thus, any partition A =
⋃N
i=1 Ei into elementary

families gives an analogous partition A + x =
⋃N
i=1(Ei + x) into elementary families,

with |Ei + x| = |Ei| for all i. �

In general, A ⊆ B does not imply π(A) ≤ π(B). However, π enjoys the following

monotonicity property.
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Lemma 6.19. For any positive integers n,m, k with n ≤ m,

π(Pn,k) ≤ π(Pm,k).

Proof. Consider an elementary family E of the form (6.3.6), where I1, I2, . . . , I` are

pairwise disjoint integer intervals and k1, k2, . . . , k` ∈ {0, 1, 2}. Then

E ∩ P({1, 2, . . . , n}) =

(
I1 ∩ {1, 2, . . . , n}

k1

)
∗ · · · ∗

(
I` ∩ {1, 2, . . . , n}

k`

)
is also an elementary family because the integer intervals Ij ∩ {1, 2, . . . , n} for j =

1, 2, . . . , ` are pairwise disjoint. Thus, any partition Pm,k =
⋃N
i=1 Ei into elementary

families gives an analogous partition for Pn,k:

Pn,k = Pm,k ∩ P({1, 2, . . . , n})

=
N⋃
i=1

Ei ∩ P({1, 2, . . . , n}).

Moreover, the elementary families in the new partition obey |Ei ∩P({1, 2, . . . , n})| ≤

|Ei| for all i. �

6.3.3. An efficient partition for Pn,k. Our analysis of the Fourier spectrum of

decision trees relies on the partition measure of the family Pn,k. Recall from (6.3.8)

that

π(Pn,k) ≥
(
n

k

)1/2

.

We will now prove that this lower bound is tight up to a factor of 2O(k), by combining

Lemmas 6.16–6.19 with the recurrence solved in Theorem 6.13.
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Theorem 6.20. Let c ≥ 1 be the absolute constant from Lemma 6.12. Then for all

positive integers n and k,

π(Pn,k) ≤
(2 +

√
2)k−1ck−1

√
k

(
2n

k

)k/2
. (6.3.10)

Proof. We first treat the case when n is a power of 2. If k ≤ 2, the family Pn,k is

elementary to start with. As a result,

π(Pn,k) ≤
(
n

k

)1/2

, k ≤ 2. (6.3.11)

If n ≤ 2, the family Pn,k is empty unless k ≤ 2. Therefore, again

π(Pn,k) ≤
(
n

k

)1/2

, n ≤ 2. (6.3.12)

For n, k ≥ 3, we have

π(Pn,k) = π

(
k⋃
i=0

((
{1, 2, . . . , n/2}

i

)
∗
(
{n/2 + 1, n/2 + 2, . . . , n}

k − i

)))

≤
k∑
i=0

π

((
{1, 2, . . . , n/2}

i

)
∗
(
{n/2 + 1, n/2 + 2, . . . , n}

k − i

))

≤
k∑
i=0

π

((
{1, 2, . . . , n/2}

i

))
π

((
{n/2 + 1, n/2 + 2, . . . , n}

k − i

))

=
k∑
i=0

π(Pn/2,i) π
(
Pn/2,k−i +

n

2

)

=
k∑
i=0

π(Pn/2,i) π(Pn/2,k−i)

= 2π(Pn/2,k) +
k−1∑
i=1

π(Pn/2,i) π(Pn/2,k−i), (6.3.13)

where the second, third, and fifth steps apply Lemmas 6.16, 6.17, and 6.18, respec-

tively, and the last step uses π({∅}) = 1.
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The recurrence relations (6.3.11)–(6.3.13) show that the hypothesis of Theorem 6.13

is satisfied for the function N(n, k) := π(Pn,k). As a result, Theorem 6.13 implies

that

π(Pn,k) ≤
(2 +

√
2)k−1ck−1

√
k

(n
k

)k/2
for any n ∈ {1, 2, 4, 8, 16, . . .} and k ≥ 1. This upper bound in turn implies (6.3.10)

for any n ≥ 1 and k ≥ 1:

π(Pn,k) ≤ π(P2dlogne,k)

≤ (2 +
√

2)k−1ck−1

√
k

(
2dlogne

k

)k/2
≤ (2 +

√
2)k−1ck−1

√
k

(
2n

k

)k/2
,

where the first step uses Lemma 6.19. �

6.4. Fourier spectrum of decision trees

This section is devoted to the proof of our main result on the Fourier spectrum of

decision trees. Stated in its simplest terms, our result shows that for any function

f : {−1, 1}n → {−1, 0, 1} computable by a decision tree of depth d, the sum of the

absolute values of the Fourier coefficients of order k is at most

Ck

√(
d

k

)
(1 + lnn)k−1,

where C ≥ 1 is an absolute constant that does not depend on n, d, k. Sections 6.4.1–

6.4.3 focus on partitioning the Fourier spectrum of f into highly structured parts and

analyzing each in isolation. Sections 6.4.4 and 6.4.6 then recombine these pieces using

the machinery of elementary families.
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6.4.1. Slicing the tree. Let T be a given decision tree of depth d in Boolean

variables x1, x2, . . . , xn. For a set family S ⊆ P({1, 2, . . . , d}), we define a real function

T |S : {−1, 1}n → R by

T |S(x) =
∑
S∈S

∑
v∈{−1,1}d

T (v) · 2−d
∏
i∈S

vixT (v1v2...vi−1). (6.4.1)

A straightforward but crucial observation is that T |S is additive with respect to S,

in the following sense.

Proposition 6.21. Let T be a depth-d decision tree. Let S ′,S ′′ ⊆ P({1, 2, . . . , d})

be set families with S ′ ∩ S ′′ = ∅. Then

T |S′∪S′′ = T |S′ + T |S′′ .

Proof. Immediate by taking S = S ′ ∪ S ′′ in the defining equation (6.4.1). �

The relevance of (6.4.1) to the Fourier spectrum of decision trees is borne out by the

following lemma.

Lemma 6.22. Let T be a decision tree of depth d and degree at most 0, computing a

function f : {−1, 1}n → R. Then

Lkf = T |Pd,k , k = 0, 1, 2, . . . , n.
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Proof. By Proposition 6.9,

f(x) =
∑

v∈{−1,1}d
T (v) ·

d∏
i=1

1 + vixT (v1v2...vi−1)

2

=
∑

v∈{−1,1}d
T (v) · 2−d

∑
S⊆{1,2,...,d}

∏
i∈S

vixT (v1v2...vi−1)

=
d∑

k=0

∑
S∈Pd,k

∑
v∈{−1,1}d

T (v) · 2−d
∏
i∈S

vixT (v1v2...vi−1). (6.4.2)

Since deg(T ) ≤ 0, the coefficients T (v) for v ∈ {−1, 1}d are real numbers. Moreover,

for any v ∈ {−1, 1}d and S ⊆ {1, 2, . . . , d}, the definition of a decision tree ensures

that the product
∏

i∈S vixT (v1v2...vi−1) is a signed monomial of degree |S|. We conclude

from (6.4.2) that the degree-k homogeneous part of f is

Lkf =
∑
S∈Pd,k

∑
v∈{−1,1}d

T (v) · 2−d
∏
i∈S

vixT (v1v2...vi−1)

= T |Pd,k.

In particular, Lkf = 0 for k ≥ d+ 1. �

Looking ahead, much of our analysis of the Fourier spectrum of decision trees T

focuses on T |E for elementary families E ⊆ Pd,k. This analysis proceeds by induction,

with the following lemma required as part of the inductive step.

Lemma 6.23. Let T ∈ T (n, d, p, k) be a given decision tree and S ⊆ P({1, 2, . . . , d}).

Define m = maxv∈{−1,1}d |||T (v)|||. Then for each i = 1, 2, . . . ,
(
n
k

)
, there is a real 0 ≤
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pi ≤ 1 and a decision tree Ui ∈ T ∗(n, d, pi, 0) such that

p =

(nk)∑
i=1

pi,

|||T |S ||| ≤ m

(nk)∑
i=1

|||Ui|S |||.

Proof. Let φ =
∑

S⊆{1,2,...,n} φ̂(S)χS be an arbitrary nonzero polynomial with |||φ||| ≤ 1.

Consider the random variable X ∈ {±χS : φ̂(S) 6= 0} distributed according to

P[X = σχS] =
|φ̂(S)|
|||φ|||

(
1

2
+
|||φ|||

2
· σ sgn φ̂(S)

)
for all σ ∈ {−1, 1} and S ⊆ {1, 2, . . . , n}. Then

EX =
∑

S⊆{1,2,...,n}

∑
σ∈{−1,1}

σχS ·
|φ̂(S)|
|||φ|||

(
1

2
+
|||φ|||

2
· σ sgn φ̂(S)

)

=
∑

S⊆{1,2,...,n}

χS ·
|φ̂(S)|
|||φ|||

· |||φ||| · sgn φ̂(S)

= φ(x).

In conclusion, φ can be viewed as the expected value of a random variable X ∈ {±χS :

φ̂(S) 6= 0}.

We may assume that T has at least one nonzero leaf, since otherwise the lemma holds

trivially with p1 = p2 = · · · = p(nk)
= p = 0. The previous paragraph implies that for

every leaf v ∈ {−1, 1}d with T (v) 6= 0, the polynomial T (v)/m is the expected value

of a random variable Xv whose support is contained in the set of the nonzero degree-k

monomials of T (v) with ±1 coefficients. The joint distribution of the Xv is immaterial
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for our purposes, but for concreteness let us declare them to be independent. Then

T |S(x) = m
∑
S∈S

∑
v∈{−1,1}d

T (v)

m
· 2−d

∏
i∈S

vixT (v1v2...vi−1)

= m
∑
S∈S

∑
v∈{−1,1}d:
T (v)6=0

E[Xv] · 2−d
∏
i∈S

vixT (v1v2...vi−1)

= mE

∑
S∈S

∑
v∈{−1,1}d:
T (v)6=0

Xv · 2−d
∏
i∈S

vixT (v1v2...vi−1)

 .
Applying Proposition 2.2,

|||T |S ||| ≤ mE

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑
S∈S

∑
v∈{−1,1}d:
T (v)6=0

Xv · 2−d
∏
i∈S

vixT (v1v2...vi−1)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ . (6.4.3)

In the last expression, each random variable Xv is a signed monomial of degree k

that does not contain any of the variables xT (ε), xT (v1), . . . , xT (v1v2...vd−1) queried along

the path from the root to v. Therefore, the expectation in (6.4.3) is over |||U |S |||

for some trees U ∈ T ∗(n, d, p, k). We conclude that there is a fixed decision tree

U ∈ T ∗(n, d, p, k) with

|||T |S ||| ≤ m |||U |S |||. (6.4.4)

Finally, decompose

U |S =
∑

S∈Pn,k

US|S · χS,
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where US is the depth-d decision tree given by

US(v) =



U(v) if |v| ≤ d− 1,

−1 if |v| = d and U(v) = −χS,

1 if |v| = d and U(v) = χS,

0 otherwise.

In other words, US is the decision tree obtained from U by setting to 1 every leaf

labeled χS, setting to −1 every leaf labeled −χS, and setting all other leaves to 0.

It is clear that the densities of the US sum to the density of U . We conclude that

US ∈ T ∗(n, d, pS, 0) for some reals 0 ≤ pS ≤ 1 with
∑

S∈Pn,k pS = p. Moreover,

|||T |S ||| ≤ m |||U |S |||

≤ m
∑

S∈Pn,k

|||US|S · χS|||

≤ m
∑

S∈Pn,k

|||US|S |||,

where the first step is a restatement of (6.4.4); the second step applies Proposition 2.2;

and the last step is justified by Proposition 2.3. In summary, the decision trees

U1, U2, . . . , U(nk)
in the statement of the lemma can be taken to be the US, in arbitrary

order. �

6.4.2. Analytic preliminaries. For positive integers m and k, define

Λm,k(p) =



0 if p = 0,

p

√(
1

k
ln
ekmk−1

p

)k
if 0 < p ≤ 1/m,

p

√(
ln
e

p

)
(ln em)k−1 if 1/m < p ≤ 1.
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Our bound for the Fourier spectrum of decision trees is in terms of this function. As

preparation for our main result, we now collect the analytic properties of Λm,k that

we will need.

Lemma 6.24. Let m and k be any positive integers. Then:

(i) Λm,k is continuous on [0, 1];

(ii) Λm,k is monotonically increasing on [0, 1];

(iii) Λm,k is concave on [0, 1].

Proof. (i) The continuity on (0, 1/m)∪(1/m, 1] is immediate. The continuity at p = 0

and p = 1/m follows by examining the one-sided limits at those points, which are 0

and (ln em)k/2/m, respectively.

(ii) Considering the derivative Λ′m,k separately on (0, 1/m) and (1/m, 1], one finds in

both cases that the derivative is positive:

Λ′m,k(p) =



√(
1

k
ln
ekmk−1

p

)k (
1− k

2 ln(ekmk−1/p)

)
if 0 < p < 1/m,(√

ln
e

p
− 1

2
√

ln(e/p)

)√
(ln em)k−1 if 1/m < p ≤ 1.

Since Λm,k is continuous on [0, 1], it follows that Λm,k is monotonically increasing on

[0, 1].

(iii) The one-sided derivatives of Λm,k at p = 1/m are both (ln em)
k−2
2 ln(

√
em).

Along with the calculations in (ii), this shows that Λm,k is continuously differentiable

on (0, 1]. The formulas in (ii) further reveal that Λ′m,k is monotonically decreasing

on (0, 1/m) and on (1/m, 1]. By the continuity of Λ′m,k on (0, 1], we conclude that

Λ′m,k is monotonically decreasing on (0, 1], which in turn makes Λm,k concave on (0, 1].

Since Λm,k is continuous at 0, we conclude that Λm,k is concave on the entire interval

[0, 1]. �

302



The function Λm,k arises as the solution to a natural optimization problem, which we

now describe.

Lemma 6.25. Let m and k be positive integers. Then for 0 < p ≤ 1,

Λm,k(p) = pmax

{
k∏
i=1

√
ln exi : xi ≥ 1 and x1x2 . . . xi ≤

mi−1

p
for all i

}
.

(6.4.5)

Proof. For k = 1, the left-hand side and right-hand side are clearly p
√

ln(e/p). In

what follows, we treat the complementary case k ≥ 2.

For 0 < p ≤ 1/m, the upper bound in (6.4.5) follows by taking x1 = x2 = · · · = xk =

(mk−1/p)1/k. For 1/m < p ≤ 1, the upper bound follows by setting x1 = 1/p and

x2 = · · · = xk = m.

For the lower bound in (6.4.5), fix reals x1, x2, . . . , xk ≥ 1 with x1 ≤ 1/p and

x1x2 . . . xk ≤ mk−1/p. Then

√
ln ex1 ·

k∏
i=2

√
ln exi ≤

√
ln ex1

(
1

k − 1
ln ek−1x2 . . . xk

)(k−1)/2

≤
√

ln ex1

(
1

k − 1
ln
ek−1mk−1

px1

)(k−1)/2

, (6.4.6)

where the first step applies the AM–GM inequality. Elementary calculus shows

that (6.4.6) as a function of x1 is monotonically increasing on [1, (mk−1/p)1/k] and

monotonically decreasing on [(mk−1/p)1/k,mk−1/p]. Recalling that 1 ≤ x1 ≤ 1/p, we
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conclude that (6.4.6) is maximized at

x1 = min

((
mk−1

p

)1/k

,
1

p

)

=

(mk−1/p)1/k if 0 < p ≤ 1/m,

1/p if 1/m < p ≤ 1.

Making this substitution shows that (6.4.6) does not exceed Λm,k(p). �

This optimization view of Λm,k implies a host of useful facts that would be bothersome

to prove directly. We state them as corollaries below.

Corollary 6.26. Let m and k be positive integers. Then for all p, q ∈ [0, 1],

qΛm,k(p) ≤ Λm,k(pq).

Proof. If p = 0 or q = 0, the left-hand side and right-hand side both vanish. If

p, q ∈ (0, 1], the claim can be equivalently stated as Λm,k(p)/p ≤ Λm,k(pq)/pq, which

in turn amounts to saying that Λm,k(p)/p is monotonically nonincreasing in p ∈ (0, 1].

This monotonicity is immediate from Lemma 6.25. �

Corollary 6.27. Let m, k, ` be positive integers. Then for all p, q ∈ [0, 1],

Λm,k(p) Λm,`

( q
m

)
≤ Λm,k+`(pq)

m
.

Proof. If p = 0 or q = 0, the left-hand side and right-hand side both vanish. In what

follows, we treat p, q ∈ (0, 1]. By Lemma 6.25,

Λm,k(p) Λm,`

( q
m

)
=
pq

m
max

{
k+∏̀
i=1

√
ln exi

}
, (6.4.7)
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where the maximum is over all x1, x2, . . . , xk+` ≥ 1 such that

x1x2 . . . xi ≤
mi−1

p
, i = 1, 2, . . . , k, (6.4.8)

xk+1xk+2 . . . xi ≤
mi−k−1

q/m
, i = k + 1, . . . , k + `. (6.4.9)

Equations (6.4.8) and (6.4.9) imply that the maximum in (6.4.7) is over

x1, x2, . . . , xk+` ≥ 1 that satisfy, among other things, x1x2 . . . xi ≤ mi−1/(pq) for

i = 1, 2, . . . , k + `. Now Lemma 6.25 implies that the right-hand side of (6.4.7) is at

most Λm,k+`(pq)/m. �

Corollary 6.28. Let m and k be positive integers. Then for all p ∈ [0, 1],

Λm,k(p) ≤
√

2kp · Λm,k(
√
p). (6.4.10)

Proof. For p = 0, the left-hand side and right-hand side both vanish. For p ∈ (0, 1],

we have:

Λm,k(p) = pmax

{
k∏
i=1

√
ln exi : xi ≥ 1 and x1x2 . . . xi ≤

mi−1

p
for all i

}

≤ pmax

{
k∏
i=1

√
ln ex2

i : xi ≥ 1 and x1x2 . . . xi ≤
mi−1

√
p

for all i

}

≤
√

2k pmax

{
k∏
i=1

√
ln exi : xi ≥ 1 and x1x2 . . . xi ≤

mi−1

√
p

for all i

}
=
√

2kp · Λm,k(
√
p),

where the first and last steps use Lemma 6.25. �
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6.4.3. Contiguous intervals. We have reached a focal point of this chapter,

where we analyze T |E for arbitrary decision trees T and “canonical” elementary fam-

ilies E . The families that we allow are those of the form

E =

(
I1

k1

)
∗
(
I2

k2

)
∗ · · · ∗

(
I`
k`

)
,

where k1, k2, . . . , k` ∈ {1, 2} and the integer intervals I1, I2, . . . , I` form a partition of

{1, 2, . . . , d} with d being the depth of T. The proof proceeds by induction on `, with

Lemmas 6.22, 6.23, and the analytic properties of Λm,k applied in the inductive step.

We will later generalize this result to arbitrary elementary families E and, from there,

to all of Pd,k via the results of Section 6.3.

Theorem 6.29. Let T ∈ T ∗(n, d, p, 0) be given, for some 0 ≤ p ≤ 1 and integers

n, d ≥ 1. Let ` ≥ 1. Let I1, I2, . . . , I` be pairwise disjoint integer intervals with

I1 ∪ I2 ∪ · · · ∪ I` = {1, 2, . . . , d}, and let k1, k2, . . . , k` ∈ {1, 2}. Abbreviate k = k1 +

k2 + · · ·+ k`. Then∣∣∣∣∣∣∣∣∣∣∣∣T |(I1k1)∗(I2k2)∗···∗(I`k`)
∣∣∣∣∣∣∣∣∣∣∣∣ ≤ 2Ck 12`−1Λn2,k(p)

∏̀
i=1

(
|Ii|
ki

)1/2

, (6.4.11)

where C ≥ 1 is the absolute constant from Theorem 6.11.

Proof. The proof is by induction on `. The base case ` = 1 corresponds to I1 =

{1, 2, . . . , d}. Let f : {−1, 1}n → {−1, 0, 1} be the function computed by T. If f ≡ 0,

we have T |(I1k1)
≡ 0 and the bound holds trivially. In the complementary case f 6≡ 0,

recall from Fact 6.10 that

P
x∈{−1,1}n

[f(x) 6= 0] = p. (6.4.12)
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Then

|||T |(I1k1)
||| = |||Lk1f |||

≤
(
|I1|
k1

)1/2

Ck1p

k1∏
i=1

√
ln
eni−1

p

≤
(
|I1|
k1

)1/2

· 2Ck1p

k1∏
i=1

√
ln
eni−1

√
p

≤
(
|I1|
k1

)1/2

· 2Ck1Λn2,k1(p)

=

(
|I1|
k1

)1/2

· 2CkΛn2,k(p),

where the first step is valid by Lemma 6.22; the second step uses Theorem 6.11 along

with (6.4.12) and k1 ≤ 2; and the fourth step applies Lemma 6.25. This settles the

base case.

We now turn to the inductive step, ` ≥ 2. If kj > |Ij| for some j, then

T |(I1k1)∗(
I2
k2

)∗···∗(I`k`)
= T |∅ = 0,

and the claimed bound holds trivially. We may therefore assume that kj ≤ |Ij| for

every j = 1, 2, . . . , `. This means in particular that the intervals I1, I2, . . . , I` are

nonempty. Furthermore, by renumbering the intervals if necessary, we may assume

that I1 < I2 < · · · < I`. Put d′ = max I`−1, so that I` = {d′ + 1, d′ + 2, . . . , d}.

Abbreviate

S ′ =
(
I1

k1

)
∗
(
I2

k2

)
∗ · · · ∗

(
I`−1

k`−1

)
,

S = S ′ ∗
(
I`
k`

)
.
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For j = 0, 1, 2, . . . , define a depth-d′ decision tree T ′j by

T ′j(v) =


T (v) if v ∈ {−1, 1}≤d′−1,

Tv|({1,2,...,|I`|}k`
) if v ∈ {−1, 1}d′ and dns(Tv) ∈ (3−j−1, 3−j]

0 otherwise.

,

Observe that T ′j is a valid decision tree in that for every leaf v ∈ {−1, 1}d′ , the label

T ′j(v) ∈ R[x1, x2, . . . , xn] is a function that does not depend on any of the variables

xT (ε), xT (v1), xT (v1v2), . . . , xT (v1v2...vd′−1) (6.4.13)

queried along the path from the root to v. Indeed, recall from Lemma 6.22 that

Tv|({1,2,...,|I`|}k`
) is the k`-th homogeneous part of the function computed by the subtree

Tv, which by definition does not use any of the variables (6.4.13). We also note that

all but finitely many of the trees T0, T1, T2, . . . are identically zero; however, working

with the infinite sequence is more convenient from the point of view of notation and

calculations.

The weighted densities of T ′0, T ′1, T ′2, . . . are given by

∞∑
j=0

3−j dns(T ′j) =
∞∑
j=0

3−j P
v∈{−1,1}d′

[T ′j(v) 6= 0]

≤
∞∑
j=0

3−j P
v∈{−1,1}d′

[3−j−1 < dns(Tv) ≤ 3−j]

≤ 3 E
v∈{−1,1}d′

dns(Tv)

= 3 dns(T )

= 3p. (6.4.14)

The relevance of T ′j to our analysis of T |S is clear from the following claims, whose

proofs we will present shortly.
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Claim 6.30. T |S =
∑∞

j=0 T
′
j|S′ .

Claim 6.31. For j = 0, 1, 2, . . . , one has

|||T ′j|S′ ||| ≤ 8Ck 12`−2

(
|I1|
k1

)1/2

· · ·
(
|I`|
k`

)1/2

·
√

3−jΛn2,k(
√

3−j dns(T ′j)).

We now complete the proof of the theorem. Set s =
∑∞

i=0

√
3−i = 2.3660 . . . . Then

∞∑
j=0

√
3−jΛn2,k(

√
3−j dns(T ′j)) = s

∞∑
j=0

√
3−j

s
Λn2,k(

√
3−j dns(T ′j))

≤ sΛn2,k

(
∞∑
j=0

√
3−j

s
·
√

3−j dns(T ′j)

)

≤ 3Λn2,k

(
s

3

∞∑
j=0

√
3−j

s
·
√

3−j dns(T ′j)

)

≤ 3Λn2,k(p), (6.4.15)

where the second step is valid by Lemma 6.24 (iii); the third step uses Corollary 6.26

with q = s/3; and the final step is justified by (6.4.14) and Lemma 6.24 (ii). As a

result,

|||T |S ||| ≤
∞∑
j=0

|||T ′j|S′|||

≤ 8Ck 12`−2

(
|I1|
k1

)1/2

· · ·
(
|I`|
k`

)1/2 ∞∑
j=0

√
3−jΛn2,k(

√
3−j dns(T ′j))

≤ 2Ck 12`−1

(
|I1|
k1

)1/2

· · ·
(
|I`|
k`

)1/2

Λn2,k(p),

where the first step is valid by Proposition 2.2 and Claim 6.30, bearing in mind once

again that all but finitely many of the T ′j|S′ are identically zero; the second step is

a substitution from Claim 6.31; and the final step uses (6.4.15). This completes the

inductive step. �
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Proof of Claim 6.30. Let T ′ be the depth-d′ decision tree given by

T ′(v) =


T (v) if v ∈ {−1, 1}≤d′−1,

Tv|({1,2,...,|I`|}k`
) if v ∈ {−1, 1}d′ .

This definition implies that

T ′(v) =

T
′
0(v) = T ′1(v) = T ′2(v) = · · · if v ∈ {−1, 1}≤d′−1,

T ′0(v) + T ′1(v) + T ′2(v) + · · · if v ∈ {−1, 1}d′ .

As a result,

T ′|S′ =
∑
S∈S′

∑
v∈{−1,1}d′

(
∞∑
j=0

T ′j(v)

)
· 2−d′

∏
i∈S

vixT ′(v1v2...vi−1)

=
∞∑
j=0

∑
S∈S′

∑
v∈{−1,1}d′

T ′j(v) · 2−d′
∏
i∈S

vixT ′j(v1v2...vi−1)

=
∞∑
j=0

T ′j|S′ . (6.4.16)

Thus, the proof will be complete once we show that T ′|S′ = T |S .

Since S is the family of sets S expressible as S = S ′ ∪ S ′′ with S ′ ∈ S ′ and S ′′ ∈
(
I`
k`

)
,

we have

T |S =
∑
S∈S

∑
v∈{−1,1}d

T (v) · 2−d
∏
i∈S

vixT (v1v2...vi−1)

=
∑
S′∈S′

∑
S′′∈(I`k`)

∑
v∈{−1,1}d

T (v) · 2−d
∏

i∈S′∪S′′
vixT (v1v2...vi−1). (6.4.17)
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Recall that S ′ ⊆ P({1, 2, . . . , d′}) and I` = {d′+ 1, d′+ 2, . . . , d}. As a result, (6.4.17)

yields

T |S =
∑
S′∈S′

∑
S′′∈(I`k`)

∑
v′∈{−1,1}d′

v′′∈{−1,1}d−d′

T (v′v′′) · 2−d
∏
i∈S′

v′ixT (v′1v
′
2...v

′
i−1)

×
∏
i∈S′′

v′′i−d′xT (v′v′′1 v
′′
2 ...v

′′
i−1−d′ )

.

A change of index now gives

T |S =
∑
S′∈S′

∑
S′′∈({1,2,...,|I`|}k`

)

∑
v′∈{−1,1}d′

v′′∈{−1,1}d−d′

T (v′v′′) · 2−d
∏
i∈S′

v′ixT (v′1v
′
2...v

′
i−1)

×
∏
i∈S′′

v′′i xT (v′v′′1 v
′′
2 ...v

′′
i−1).

Since T (v′v′′) = Tv′(v
′′) and T (v′v′′1v

′′
2 . . . v

′′
i−1) = Tv′(v

′′
1v
′′
2 . . . v

′′
i−1), we arrive at

T |S =
∑
S′∈S′

∑
v′∈{−1,1}d′

2−d
′∏
i∈S′

v′ixT (v′1v
′
2...v

′
i−1)

×

 ∑
S′′∈({1,2,...,|I`|}k`

)

∑
v′′∈{−1,1}d−d′

Tv′(v
′′) · 2−d+d′

∏
i∈S′′

v′′i xTv′ (v′′1 v′′2 ...v′′i−1)

 .

The large parenthesized expression is by definition Tv′ |({1,2,...,|I`|}k`
) = T ′(v′), whence

T |S =
∑
S′∈S′

∑
v′∈{−1,1}d′

T ′(v′) · 2−d′
∏
i∈S′

v′ixT (v′1v
′
2...v

′
i−1)

=
∑
S′∈S′

∑
v′∈{−1,1}d′

T ′(v′) · 2−d′
∏
i∈S′

v′ixT ′(v′1v′2...v′i−1)

= T ′|S′ . (6.4.18)

By (6.4.16) and (6.4.18), the proof is complete. �
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Proof of Claim 6.31. Recall from Lemma 6.22 that Tv|({1,2,...,|I`|}k`
) is the k`-th homo-

geneous part of the function computed by the subtree Tv of T. This implies that

T ′j ∈ T (n, d′, dns(T ′j), k`). Moreover, every nonzero leaf v of T ′j has norm∣∣∣∣∣∣∣∣∣∣∣∣Tv|({1,2,...,|I`|}k`
)

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ 2Ck`

(
|I`|
k`

)1/2

Λn2,k`(dns(Tv))

≤ 2Ck`

(
|I`|
k`

)1/2

Λn2,k`(3
−j),

where the first step applies the inductive hypothesis to the tree Tv of depth |I`|,

and the second step is legitimate by the monotonicity of Λn2,k` (Lemma 6.24). Now

Lemma 6.23 gives, for each i = 1, 2, . . . ,
(
n
k`

)
, a real number 0 ≤ pi ≤ 1 and a decision

tree Uj,i ∈ T ∗(n, d′, pi, 0) such that

dns(T ′j) =

( nk`)∑
i=1

pi, (6.4.19)

|||T ′j|S′ ||| ≤ 2Ck`

(
|I`|
k`

)1/2

Λn2,k`(3
−j)

( nk`)∑
i=1

|||Uj,i|S′|||. (6.4.20)

Applying the inductive hypothesis to each Uj,i|S′ gives

( nk`)∑
i=1

|||Uj,i|S′ ||| ≤ 2Ck−k` 12`−2

√(
|I1|
k1

)
· · ·
(
|I`−1|
k`−1

) ( nk`)∑
i=1

Λn2,k−k`(pi). (6.4.21)
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The final summation can be bounded via

( nk`)∑
i=1

Λn2,k−k`(pi) ≤
(
n

k`

)
· Λn2,k−k`

(n
k`

)−1 ( nk`)∑
i=1

pi


= n2 · 1

n2

(
n

k`

)
· Λn2,k−k`

((
n

k`

)−1

dns(T ′j)

)

≤ n2Λn2,k−k`

(
dns(T ′j)

n2

)
, (6.4.22)

where the first step is valid by Lemma 6.24 (iii); the second step is a substitution

from (6.4.19); and the third step uses k` ≤ 2 along with Corollary 6.26. Now

|||T ′j|S′||| ≤ 4Ck 12`−2

√(
|I1|
k1

)
· · ·
(
|I`|
k`

)
· Λn2,k`(3

−j) · n2Λn2,k−k`

(
dns(T ′j)

n2

)

≤ 8Ck 12`−2

√(
|I1|
k1

)
· · ·
(
|I`|
k`

)
·

Λn2,k`(
√

3−j)√
3j

· n2Λn2,k−k`

(
dns(T ′j)

n2

)

≤ 8Ck 12`−2

√(
|I1|
k1

)
· · ·
(
|I`|
k`

)
·
√

3−jΛn2,k(
√

3−j dns(T ′j)),

where the first step combines (6.4.20)–(6.4.22); the second step uses k` ≤ 2 and

Corollary 6.28; and the third step applies Corollary 6.27. �

6.4.4. Generalization to elementary families. En route to our main result

on the Fourier spectrum of decision trees, we now generalize Theorem 6.29 to arbitrary

elementary families E .

Theorem 6.32. Let T ∈ T ∗(n, d, p, 0) be given, for some 0 ≤ p ≤ 1 and integers

n, d ≥ 1. Let k be an integer with 1 ≤ k ≤ d. Then every elementary family E ⊆ Pd,k
satisfies

|||T |E ||| ≤ (12C)kΛn2,k(p)
√
|E|, (6.4.23)
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where C ≥ 1 is the absolute constant from Theorem 6.11.

Proof. If E = ∅, then T |E ≡ 0 and the claimed upper bound holds trivially. In the

complementary case of nonempty E , let ` be the minimum positive integer such that

E =

(
I1

k1

)
∗
(
I2

k2

)
∗ · · · ∗

(
I`
k`

)
(6.4.24)

for some pairwise disjoint integer intervals I1, I2, . . . , I` and some k1, k2, . . . , k` ∈

{0, 1, 2}. Since E 6= ∅, Proposition 6.14 (i) implies that
(
Ij
kj

)
6= ∅ for all j and

therefore

|Ij| ≥ kj, j = 1, 2, . . . , `. (6.4.25)

The reader will recall from the definition of the ∗ operator that

|E| =
∏̀
j=1

(
|Ij|
kj

)
, (6.4.26)

k =
∑̀
j=1

kj. (6.4.27)

Since we chose a representation (6.4.24) with the minimum `, Proposition 6.14 (ii)

additionally implies that
(
Ij
kj

)
6= {∅} for all j, forcing

kj ∈ {1, 2}, j = 1, 2, . . . , `. (6.4.28)

The previous two equations yield

` ≤ k. (6.4.29)

It follows from (6.4.25) and (6.4.28) that each Ij is a nonempty subset of {1, 2, . . . , d}.

Furthermore, by renumbering the intervals if necessary, we may assume that I1 < I2 <

· · · < I`. We abbreviate I = I1 ∪ I2 ∪ · · · ∪ I` and I = {1, 2, . . . , d} \ I.

314



It is obvious that every string v ∈ {−1, 1}d is uniquely determined by its substrings

v|I and v|I . Similarly, for every i ∈ I, the prefix v1v2 . . . vi−1 is uniquely determined

by the substrings (v1v2 . . . vi−1)|I and v|I . This means in particular that

T (v) = Uv|I (v|I), v ∈ {−1, 1}d (6.4.30)

T (v1v2 . . . vi−1) = Uv|I ((v1v2 . . . vi−1)|I), v ∈ {−1, 1}d, i ∈ I, (6.4.31)

where {Uw : w ∈ {−1, 1}|I|} is a suitable collection of decision trees of depth I. By

definition,

Uw ∈ T ∗(n, |I|, dns(Uw), 0), w ∈ {−1, 1}|I|. (6.4.32)

Moreover, the densities of the Uw are related in a natural way to the density of

T. Indeed, considering a uniformly random string v ∈ {−1, 1}d in (6.4.30) gives

P[T (v) 6= 0] = P[Uv|I (v|I) 6= 0], which is equivalent to

dns(T ) = E dns(Uv|I ). (6.4.33)

In what follows, all expectations are with respect to uniformly random v ∈ {−1, 1}d.

We have:

T |E = E

[∑
S∈E

T (v)
∏
i∈S

vixT (v1v2...vi−1)

]

= E

 ∑
S1∈(I1k1)

· · ·
∑

S`∈(I`k`)

T (v)
∏̀
j=1

∏
i∈Sj

vixT (v1v2...vi−1)



= E

 ∑
S1∈(I1k1)

· · ·
∑

S`∈(I`k`)

Uv|I (v|I)
∏̀
j=1

∏
i∈Sj

vixUv|
I

((v1v2...vi−1)|I)

 ,
where the last step uses (6.4.30) and (6.4.31). It remains to shift the indexing variable

i. For this, let I ′1 < I ′2 < · · · < I ′` denote the integer intervals that form a partition of
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{1, 2, . . . , |I|} and satisfy |I ′j| = |Ij| for all j. Now the previous equation for T |E can

be restated as

T |E = E

 ∑
S1∈(I

′
1
k1

)

· · ·
∑

S`∈(I
′
`
k`

)

Uv|I (v|I)
∏̀
j=1

∏
i∈Sj

(v|I)i · xUv|
I

((v|I)≤i−1)


= E

[
Uv|I |(I′1k1)∗···∗(

I′
`
k`

)

]
. (6.4.34)

As a result,

|||T |E ||| ≤ E

∣∣∣∣∣∣∣∣∣∣∣∣Uv|I |(I′1k1)∗···∗(I′`k`)
∣∣∣∣∣∣∣∣∣∣∣∣

≤ E

[
2Ck 12`−1Λn2,k(dns(Uv|I ))

∏̀
i=1

(
|I ′i|
ki

)1/2
]

= 2Ck 12`−1 E

[
Λn2,k(dns(Uv|I ))

∏̀
i=1

(
|Ii|
ki

)1/2
]

= 2Ck 12`−1
√
|E| E

[
Λn2,k(dns(Uv|I ))

]
≤ 2Ck 12`−1

√
|E|Λn2,k(E dns(Uv|I ))

≤ (12C)k
√
|E|Λn2,k(dns(T )),

where the first step applies Proposition 2.2 to (6.4.34); the second step is justified

by (6.4.32) and Theorem 6.29; the fourth step is a substitution from (6.4.26); the fifth

step is legitimate by Lemma 6.24 (iii); and the final step uses (6.4.29) and (6.4.33).

Since T has density p by hypothesis, the proof is complete. �

6.4.5. Fourier spectrum at first two levels. In this subsection, we present

a proof of Theorem 6.11 for completeness. We need the following bound on the

cumulative distribution function of normal distribution.
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Theorem 6.33 (CDF of normal distribution [48]). Let Φ be the CDF of normal

distribution, i.e.,

Φ(x) =
1√
2π

∫ x

−∞
exp

(
−t

2

2

)
dt.

For x > 0,

1− Φ(x) ≤ exp(−x2/2)

x
√

2/π
.

With this tool at our disposal, we proceed to our proof of the first bound in Theo-

rem 6.11.

Theorem 6.34 (Tal). For some absolute constant C ≥ 1, any decision tree T :

{−1, 1}n → {0, 1} of depth d and density dns(T ) = p, we have

|||L1 T ||| ≤
(
d

1

)1/2

Cp

√
ln
e

p
. (6.4.35)

Proof. We can assume p ≤ 0.5, since

|||L1 T ||| = |||L1 (1− T )|||,

and the bound (6.4.35) is increasing in p ∈ [0, 1]. For arbitrary σ ∈ {−1, 1}n, and any

path v ∈ {−1, 1}d, abbreviate

(σ, v)T =
d∑
i=1

σT (v<i)vi.

Observe that

|||L1 T ||| = max
σ

E
v∈{−1,1}d

[T (v) · (σ, v)T ]. (6.4.36)

The above equation holds because Ev∈{−1,1}d [T (v)
∑d

i=1 vi] is simply
∑n

i=1 T̂ (i). Here

σi works as guessing sgn T̂ (i).
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Now fix σ. Let v ∈ {−1, 1}d be a uniformly random root-to-leaf path in T . Define

random variable Xi = σT (v<i) · vi for i ∈ [d]. Note that the partial sums

j∑
i=1

Xi j = 0, 1, 2, . . . , d

form a martingale. Let P ⊆ {0, 1}d denote any set of root-to-leaf paths such that

(i) Pr[P ] = p, i.e., |P| = p2d,

(ii) (σ, v)T ≥ (σ, v′)T , ∀ v ∈ P , v′ 6∈ P .

Since p ≤ 1/2, by symmetry we can deduce that (σ, v)T ≥ 0 for any v ∈ P . For t ≥ 0,

let Pt = {v : (σ, v)T ≥ t}. By Azuma’s inequality,

Pr
v∈{−1,1}d

[v ∈ Pt] = Pr
v∈{−1,1}d

[
d∑
i=1

Xi ≥ t

]
≤ exp

(
− t

2

2d

)
. (6.4.37)

Set θ =
⌈√

2d ln 1
p

⌉
. The choice of θ guarantees that |Pθ| ≤ p2d. Therefore, it holds

that Pθ ⊆ P by our definition of Pθ and P . Now we bound Ev[T (v) ·(σ, v)T ] as follows

E
v∈{−1,1}d

[T (v) · (σ, v)T ] ≤ 2−d
∑
v∈P

(σ, v)T

≤ 2−d
∑

v∈P\Pθ

θ + 2−d
∑
v∈Pθ

(σ, v)T

≤ Pr[P \ Pθ]θ + Pr[Pθ]θ +
d∑

t=θ+1

Pr[Pt]

≤ pθ +
d∑

t=θ+1

exp

(
− t

2

2d

)

≤ pθ +

∫ ∞
θ

exp

(
− t

2

2d

)
dt

≤ p

⌈√
2d ln

1

p

⌉
+

1√
8
· p
√
d,
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where the first equality holds because (σ, v)T ≥ 0 for any v ∈ P ; the second step

holds because (σ, v)T < θ for v ∈ P \ Pθ; the forth step is by (6.4.37); and last step

follows Theorem 6.33. In view of the (6.4.36), we are done. �

Next we move on to our proof of the second bound in Theorem 6.11.

Theorem 6.35 (Tal). For some absolute constant C, any decision tree T :

{−1, 1}n → {0, 1} of depth d and density dns(T ) = p, we have

|||L2 T ||| ≤
(
d

2

)1/2

C2p

√
ln
e

p

√
ln
en

p
. (6.4.38)

Proof. For each k ∈ [n] define a decision tree Tk, which is formed by cutting the tree

T by the nodes labeled by xk. Precisely, for any node v ∈ {−1, 1}<d, consider the

following cases:

(i) T (v) = k. Then we set Tk(v) = T̂v(k). Now v will be a leaf of Tk.

(ii) For the remaining case, set Tk(v) = T (v).

All the leaves not set in the above cases are labeled by 0. Observe that for v ∈

{−1, 1}<d,

T̂v(T (v)) = E
u∈{−1,1}d:

u�v

[T (u)]. (6.4.39)

The above process naturally gives two types of leaves Ak, Bk. Ak contains leaves

v such that |v| < d, and these leaves are labeled by some real number which is a

multiple of 2−(d−|v|). Bk contains the leaves all labeled by 0. Let

pk =
∑
v∈Ak

2−|v||Tk(v)|.
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Let c be the constant in Theorem 6.34, the following three equations relate the trees

constructed above and |||L2 T ||| :

L2 T =
n∑
k=1

xk · L1 Tk, (6.4.40)

n∑
k=1

pk ≤
(
d

1

)1/2

cp

√
ln
e

p
, (6.4.41)

|||L1 Tk||| ≤
(
d

1

)1/2

cpk

√
ln

e

pk
, k = 1, 2, . . . , n. (6.4.42)

Assuming the above three equations are true, then

|||L2 T ||| =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
k=1

xk · L1 Tk

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

≤
n∑
k=1

|||L1 Tk|||

≤
n∑
k=1

(
d

1

)1/2

cpk

√
ln

e

pk

≤
(
d

1

)1/2

c

(
n∑
k=1

pk

)√
ln

en

(
∑n

k=1 pk)

≤
(
d

1

)
c2p

√
ln
e

p

√
ln

en

cp
√
d ln(e/p)

≤
(
d

2

)2

C2p

√
ln
e

p

√
ln
en

p
,

where the fourth and fifth step uses the concavity and monotonicity of the regarding

functions; the last step holds since c
√
d ln(e/p) ≥ 1. Now we verify (6.4.40)–(6.4.42).
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(6.4.40). Expand L2 T,

L2 T (x) = E
v∈{−1,1}d

[ ∑
1≤i<j≤d

T (v)vivjxT (v<i)xT (v<j)

]

=
n∑
k=1

E
v∈{−1,1}d

[
T (v)

∑
1<j≤d

vjxkI[T (v<j) = k] ·

(∑
1≤i<j

vixT (v<i)

)]

=
n∑
k=1

∑
u∈Ak

E
v∈{−1,1}d

I[u � v] · T (v)v|u|xk
∑

1≤i<|u|

uixT (u<i)


=

n∑
k=1

∑
u∈Ak

Pr
v∈{−1,1}d

[I[u � v]] · T̂u(k)xk
∑

1≤i<|u|

uixT (u<i)

=
n∑
i=1

xk · L1 Tk,

where the fourth step follows (6.4.39).

(6.4.41). For each internal node v ∈ {−1, 1}<d, without loss of generality, assume

that T̂v(T (v)) ≥ 0. Since otherwise, we can exchange the left and right children of v

in T without changing pk. Under this assumption, we have for any k ∈ [n],

pk = |T̂ (k)|.

By Theorem 6.34,

∑
i=1

pk ≤
(
d

1

)1/2

Cp

√
ln
e

p
.

(6.4.42). The inequality holds if there is a full binary tree of T ′ of depth d and density

at most p, such that |||L1 T
′||| ≥ |||L1 Tk|||, as |||L1 T

′||| is be bounded by Theorem 6.34.

We construct such T ′. Let T ′(v) = Tk(v) for all internal node v of Tk, and T ′(v) = 0

for v ∈ Bk. The nodes left are those in the subtrees Tv for v ∈ Ak. Note that for

any v ∈ Ak, L1 Tv is a multiple of 2−(d−|v|). We label T ′v in a very “generous” manner.

Label each node in T ′v using a fresh variable. Consequently, T ′ can have an enormous
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number of variables, but it is not a problem for us. Label 2(d−|v|)|Tk(v)| leaves in T ′v1

by 1 if Tk(v) > 0, and label 2(2−|v|)|Tk(v)| leaves in T ′v◦−1 by 1 if Tk(v) < 0. Label all

other leaves by 0. The fraction of nonzero leaves in T ′ is exactly∑
v∈Ak

2−|v||Tk(v)| = pk.

It is also easy to check that for all i ∈ [n] \ {k},

T̂ ′(i) = T̂k(i).

Therefore |||L1 T
′||| ≥ |||L1 Tk|||. �

The discussions so far settled Theorem 6.11 for decision trees with range {0, 1}. We

now extend the two bounds to decision trees with range {−1, 0, 1}.

Corollary 6.36 (Theorem 6.11 restated). For some absolute constant C, any deci-

sion tree T ∈ T ∗(n, d, p, 0), we have

|||L1 T ||| ≤
(
d

1

)1/2

Cp

√
ln
e

p
,

|||L2 T ||| ≤
(
d

2

)1/2

C2p

√
ln
e

p

√
ln
en

p
.

Proof. Let C ′ be the constant in Theorem 6.34. Write T = T+ − T−, where T+ and

T− are both decision trees with range {0, 1}. The nonzero leaves of T+ and T− are

those leaves of T labeled by 1 and −1, respectively. Let p+, p− be the fraction of the
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1 and −1 leaves in T , respectively. Then

|||L1 T ||| ≤ |||L1 T
+|||+ |||L1 T

−|||

≤
(
d

1

)1/2

C ′p+

√
ln

e

p+
+

(
d

1

)1/2

C ′p−
√

ln
e

p−

≤
(
d

1

)1/2

C ′p

√
ln

2e

p
,

where the last step is due to the concavity of p
√

ln(e/p) for p ∈ (0, 1].

A completely analogous argument works for |||L2 T ||| using the concavity of

p
√

ln(e/p) ln(en/p) for p ∈ (0, 1]. �

6.4.6. Main result. We now obtain our main result on the Fourier spectrum of

decision trees by combining Theorem 6.32 with an efficient decomposition of Pd,k into

elementary families (Theorem 6.20).

Theorem 6.37. Let f : {−1, 1}n → {−1, 0, 1} be a function computable by a decision

tree of depth d. Define p = Px∈{−1,1}n [f(x) 6= 0]. Then

|||Lkf ||| ≤
(
d

k

)1/2

(58Cc)k Λn2,k(p), k = 1, 2, . . . , n,

where C ≥ 1 and c ≥ 1 are the absolute constants from Theorem 6.11 and

Lemma 6.12, respectively.

Proof. Lemma 6.22 ensures that Lkf = 0 for k > d, so that the theorem holds

vacuously in that case. We now examine the complementary possibility, 1 ≤ k ≤

d. For some integer N ≥ 1, Theorem 6.20 gives a partition Pd,k =
⋃N
i=1 Ei where

E1, E2, . . . , EN are elementary families with

N∑
i=1

|Ei|1/2 ≤ (2 + 2
√

2)kck
(
d

k

)k/2
. (6.4.43)
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Fix a decision tree T of depth d that computes f. Then Fact 6.10 shows that T ∈

T ∗(n, d, p, 0). As a result,

|||Lkf ||| = |||T |Pd,k |||

=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

T |Ei

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

≤
N∑
i=1

|||T |Ei |||

≤
N∑
i=1

(12C)k Λn2,k(p)
√
|Ei|

≤
(
d

k

)k/2
(58Cc)k Λn2,k(p),

where the first step is valid by Lemma 6.22; the second step uses Proposition 6.21;

the third step uses Proposition 2.2; the fourth step applies Theorem 6.32; and the

final step substitutes the upper bound from (6.4.43). In view of (2.1.1), the proof is

complete. �

Maximizing over 0 ≤ p ≤ 1, we establish the following clean bound conjectured by

Tal [135].

Corollary 6.38. Let f : {−1, 1}n → {−1, 0, 1} be a function computable by a deci-

sion tree of depth d. Then

|||Lkf ||| ≤ Ck

√(
d

k

)
(1 + lnn)k−1, k = 1, 2, . . . , n,

where C ≥ 1 is an absolute constant.
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Proof. Recall from Lemma 6.24 (ii) that Λn2,k(p) ≤
√

(ln en2)k−1 for all 0 ≤ p ≤ 1.

Now the claimed bound is immediate from Theorem 6.37 after a change of constant C.

�

Corollary 6.38 settles Theorem 6.8 from the introduction. By convexity (Proposi-

tion 2.2), Corollary 6.38 holds more generally for any real function f : {−1, 1}n →

[−1, 1] computable by a decision tree of depth d.

6.5. Quantum versus classical query complexity

Using our newly derived bound for the Fourier spectrum of decision trees, we will now

prove the main result of this chapter on quantum versus randomized query complexity.

6.5.1. Quantum and randomized query models. For a nonempty finite set

X, a partial Boolean function on X is a mapping X → {0, 1, ∗}, where the output

value ∗ is reserved for illegal inputs. Recall that a randomized query algorithm of cost

d is a probability distribution on decision trees of depth at most d. For a (possibly

partial) Boolean function f on the Boolean hypercube, we say that a randomized

query algorithm computes f with error ε if, for every input x ∈ f−1(0) ∪ f−1(1), the

algorithm outputs f(x) with probability at least 1−ε. Observe that in this formalism,

the algorithm is allowed to exhibit arbitrary behavior on the illegal inputs, namely,

those in f−1(∗). The randomized query complexity Rdt
ε (f) is the minimum cost of a

randomized query algorithm that computes f with error ε. The canonical setting of

the error parameter is ε = 1/3. This choice is largely arbitrary because the error of

a query algorithm can be reduced in an efficient manner by running the algorithm

several times independently and outputting the majority answer. Quantitatively, the
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following relation follows from the Chernoff bound:

Rdt
ε (f) ≤ O

(
1

γ2
log

1

ε

)
·Rdt

1
2
−γ(f) (6.5.1)

for all ε, γ ≤ 1/2.

These classical definitions carry over in the obvious way to the quantum model. Here,

the cost is the worst-case number of quantum queries on any input, and a quantum

algorithm is said to compute f with error ε if, for every input x ∈ f−1(0)∪f−1(1), the

algorithm outputs f(x) with probability at least 1−ε. The quantum query complexity

Qdt
ε (f) is the minimum cost of a quantum query algorithm that computes f with

error ε. For an excellent introduction to classical and quantum query complexity, we

refer the reader to [29] and [138], respectively.

6.5.2. The rorrelation problem. We now formally state the problem of in-

terest to us, Tal’s rorrelation [135], which was briefly reviewed in the introduction.

Let n and k be positive integers. For an orthogonal matrix U ∈ Rn×n, consider the

multilinear polynomial φn,k,U : ({−1, 1}n)k → R given by

φn,k,U(x1, x2, . . . , xk) =
1

n
1ᵀDx1UDx2UDx3U · · ·UDxk1, (6.5.2)

where 1 denotes the all-ones vector and Dxi denotes the diagonal matrix with vector

xi on the diagonal. In what follows, we treat the sets ({−1, 1}n)k and {−1, 1}n×k

interchangeably, thereby interpreting the input to φn,k,U as an n× k sign matrix. Let
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‖ · ‖2 denote the Euclidean norm. Then for all x1, x2, . . . , xk ∈ {−1, 1}n, we have

|φn,k,U(x1, x2, . . . , xk)| =
1

n
〈1, Dx1UDx2UDx3U · · ·UDxk1〉

≤ 1

n
‖1‖2 ‖Dx1UDx2UDx3U · · ·UDxk1‖2

=
1

n
‖1‖2 ‖1‖2

= 1, (6.5.3)

where the second step applies the Cauchy–Schwarz inequality, and the third step is

valid because each of the matrices involved preserves the Euclidean norm. In particu-

lar, the multivariate polynomial φn,k,U ranges in [−1, 1] for all inputs. Generalizing the

forrelation problem of Aaronson and Ambainis [2], Tal [135] considered the partial

Boolean function fn,k,U : {−1, 1}n×k → {0, 1, ∗} given by

fn,k,U(x) =


1 if φn,k,U(x) ≥ 2−k,

0 if |φn,k,U(x)| ≤ 2−k−1,

∗ otherwise.

Aaronson and Ambainis [2] showed that there is a quantum algorithm with dk/2e

queries whose acceptance probability on input x ∈ {−1, 1}n×k is (φn,k,H(x) + 1)/2,

where H is the Hadamard transform matrix. Their analysis generalizes to any or-

thogonal matrix in place of H, to the following effect.

Fact 6.39 (Tal [135, Claim 3.1]). Let n and k be positive integers, where n is a

power of 2. Let U be an arbitrary orthogonal matrix. Then there is a quantum query

algorithm with dk/2e queries whose acceptance probability on input x ∈ {−1, 1}n×k

equals (φn,k,U(x) + 1)/2.
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Corollary 6.40. Let n and k be positive integers, where n is a power of 2. Let U

be an arbitrary orthogonal matrix. Then

Qdt
1
2
− 1

2k+4
(fn,k,U) ≤

⌈
k

2

⌉
. (6.5.4)

In particular,

Qdt
1/3(fn,k,U) ≤ O(k4k). (6.5.5)

Proof. On input x, the query algorithm for (6.5.4) is as follows: with probability p,

run the algorithm of Fact 6.39 and output the resulting answer; with complementary

probability 1 − p, output “no” regardless of x. By design, the proposed solution has

query cost at most dk/2e and accepts x with probability exactly

p · φn,k,U(x) + 1

2
.

We want this quantity to be at most 1
2
− 2−k−4 if φn,k,U(x) ≤ 2−k−1, and at least

1
2

+2−k−4 if φn,k,U(x) ≥ 2−k. These requirements are both met for p = (1+ 3
2k+2 )−1. In

summary, fn,k,U has a query algorithm with error at most 1
2
− 2−k−4 and query cost

dk/2e. To reduce the error to 1/3, run this algorithm independently Θ(4k) times and

output the majority answer; cf. (6.5.1). �

Corollary 6.40 shows that the rorrelation problem has small quantum query com-

plexity. By contrast, we will show that its randomized complexity is essentially the

maximum possible. Specifically, we will prove an optimal, near-linear lower bound on

the randomized query complexity of rorrelation by combining Tal’s work [135] with

our near-optimal bounds for the Fourier spectrum of decision trees.

In what follows, let Un,k denote the uniform probability distribution on {−1, 1}n×k.

Applying Parseval’s identity to the multilinear polynomial φn,k,U gives:
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Fact 6.41 (Tal [135, Claim 4.4]). Ex∼Un,k [φn,k,U(x)2] = 1/n.

The other result from [135] that we will need is as follows.

Fact 6.42 (Tal [135, Lemmas 5.6, 5.7, and Claim 4.1]). Let n and k be positive inte-

gers. Let U ∈ Rn×n be a uniformly random orthogonal matrix. Then with probability

1− o(1), there exists a probability distribution Dn,k,U on {−1, 1}n×k such that:

E
x∼Dn,k,U

φn,k,U(x) ≥
(

2

π

)k−1

, (6.5.6)

E
x∼Dn,k,U

∏
(i,j)∈S

xi,j = 0, |S| = 1, 2, . . . , k − 1, (6.5.7)

∣∣∣∣∣∣ E
x∼Dn,k,U

∏
(i,j)∈S

xi,j

∣∣∣∣∣∣ ≤
(
c|S| log n

n

) |S|
2
· k−1
k

, |S| = k, k + 1, . . . , nk, (6.5.8)

where c ≥ 1 is an absolute constant independent of n, k, U.

6.5.3. The quantum-classical separation. In this section, we derive our lower

bound on the randomized query complexity of the rorrelation problem by combining

Tal’s Facts 6.41 and 6.42 with our main result on decision trees (Corollary 6.38). The

technical centerpiece of this derivation is the following “indistinguishability” lemma,

which is a polynomial improvement on the analogous calculation by Tal [135, Theo-

rem 5.8] that used weaker Fourier bounds for decision trees.

Lemma 6.43. Let n and k be positive integers. Let U ∈ Rn×n be a uniformly random

orthogonal matrix. Then with probability 1 − o(1), every function g : {−1, 1}n×k →

{0, 1} obeys∣∣∣∣ EUn,k g − E
Dn,k,U

g

∣∣∣∣ ≤
(
cd · log2− 1

k (n+ k)

n1− 1
k

)k/2

, (6.5.9)
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where Dn,k,U is as defined in Fact 6.42; d is the minimum depth of a decision tree

that computes g; and c ≥ 1 is an absolute constant independent of n, k, U, g.

Proof. Fact 6.42 guarantees that with probability 1 − o(1), there is a probability

distribution Dn,k,U on {−1, 1}n×k that obeys (6.5.6)–(6.5.8). Conditioned on this

event, we will prove (6.5.9). To start with, fix g and write out the Fourier expansion

g(x) =
∑

S⊆{1,2,...,n}×{1,2,...,k}

ĝ(S)
∏

(i,j)∈S

xi,j

=
nk∑
`=0

∑
|S|=`

ĝ(S)
∏

(i,j)∈S

xi,j.

Then ∣∣∣∣ EUn,k g − E
Dn,k,U

g

∣∣∣∣ ≤ nk∑
`=0

∑
|S|=`

|ĝ(S)|

∣∣∣∣∣∣ EUn,k
∏

(i,j)∈S

xi,j − E
Dn,k,U

∏
(i,j)∈S

xi,j

∣∣∣∣∣∣
≤

nk∑
`=1

∑
|S|=`

|ĝ(S)|

∣∣∣∣∣∣ EUn,k
∏

(i,j)∈S

xi,j − E
Dn,k,U

∏
(i,j)∈S

xi,j

∣∣∣∣∣∣
≤

nk∑
`=k

∑
|S|=`

|ĝ(S)|

∣∣∣∣∣∣ E
Dn,k,U

∏
(i,j)∈S

xi,j

∣∣∣∣∣∣ ,
where the first step uses the triangle inequality; the second step is justified by

EUn,k 1 = EDn,k,U 1 = 1; and the third step is valid due to (6.5.7) and the iden-

tity EUn,k
∏

(i,j)∈S xi,j = 0 for nonempty S. Let d be the minimum depth of a decision

tree that computes g. Applying (6.5.8) then Corollary 6.38, we conclude that∣∣∣∣ EUn,k g − E
Dn,k,U

g

∣∣∣∣ ≤ nk∑
`=k

c`1

√(
d

`

)
(1 + lnnk)`−1

(
c2` log n

n

) `
2
· k−1
k

,
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where c1 ≥ 1 and c2 ≥ 1 are the absolute constants in Corollary 6.38 and Fact 6.42.

In view of (2.1.1), this gives

∣∣∣∣ EUn,k g − E
Dn,k,U

g

∣∣∣∣ ≤ ∞∑
`=k

(
c2

1 ·
ed

`
· (1 + lnnk)

`−1
` ·
(
c2` log n

n

) k−1
k

) `
2

≤
∞∑
`=k

(
c2

1 · ed · (1 + lnnk) ·
(
c2 log n

n

) k−1
k

) `
2

≤
∞∑
`=k

(
cd

4
· log2− 1

k (n+ k)

n1− 1
k

) `
2

,

where c ≥ 1 in the last step is a sufficiently large absolute constant. This settles (6.5.9)

in the case when cd log(2k−1)/k(n + k) ≤ n(k−1)/k. In the complementary case, (6.5.9)

follows from the trivial bound |EUn,k g − EDn,k,U g| ≤ 1. �

We have reached the main result of this section, an essentially tight lower bound on

the randomized query complexity of the k-fold rorrelation problem.

Theorem 6.44. Let n and k be positive integers, with k ≤ 1
3

log n− 1. Let U ∈ Rn×n

be a uniformly random orthogonal matrix. Then with probability 1− o(1),

Rdt
1/2k+1(fn,k,U) = Ω

(
n1− 1

k

(log n)2− 1
k

)
(6.5.10)

and in particular

Rdt
1
2
−γ(fn,k,U) = Ω

(
γ2

k
· n1− 1

k

(log n)2− 1
k

)
, 0 ≤ γ ≤ 1

2
. (6.5.11)

Proof. We will prove the lower bound for every U that satisfies (6.5.6) and (6.5.9),

which happens with probability 1 − o(1) by Fact 6.42 and Lemma 6.43. To begin
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with,

P
Un,k

[fn,k,U(x) 6= 0] = P
Un,k

[|φn,k,U(x)| > 2−k−1]

≤ 4k+1 E
Un,k

[φn,k,U(x)2]

≤ 4k+1

n

≤ 1

2k+1
, (6.5.12)

where the last three steps use Markov’s inequality, Fact 6.41, and k ≤ 1
3

log n − 1,

respectively. Also,(
2

π

)k−1

≤ E
Dn,k,U

φn,k,U(x)

≤ 2−k P
Dn,k,U

[φn,k,U(x) < 2−k] + P
Dn,k,U

[φn,k,U(x) ≥ 2−k]

= 2−k(1− P
Dn,k,U

[fn,k,U(x) = 1]) + P
Dn,k,U

[fn,k,U(x) = 1]

= 2−k + (1− 2−k) P
Dn,k,U

[fn,k,U(x) = 1],

where the first and second steps are justified by (6.5.6) and (6.5.3), respectively. The

last equation shows that

P
Dn,k,U

[fn,k,U(x) = 1] ≥
(

2

π

)k−1

− 2−k

≥ 2−k. (6.5.13)

Now fix arbitrary parameters d ≥ 1 and 0 ≤ ε ≤ 1/2, and consider a randomized query

algorithm of cost d that computes fn,k,U with error at most ε. Then the algorithm’s

acceptance probability on given input x is Er gr(x), where r denotes a random string

and each gr : {−1, 1}n×k → {0, 1} is computable by a decision tree of depth at most
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d. Since the error is at most ε, we have

P
r

[fn,k,U(x) = 0, gr(x) = 1] + P
r

[fn,k,U(x) = 1, gr(x) = 0] ≤ ε (6.5.14)

for every x ∈ {−1, 1}n×k. We thus obtain the two inequalities

E
r

P
Un,k

[fn,k,U(x) = 0, gr(x) = 1] ≤ ε, (6.5.15)

E
r

P
Dn,k,U

[fn,k,U(x) = 1, gr(x) = 0] ≤ ε, (6.5.16)

by passing to expectations in (6.5.14) with respect to x ∼ Un,k and x ∼ Dn,k,U ,

respectively. On the other hand, (6.5.9) and k = O(log n) imply

E
r

∣∣∣∣ E
Dn,k,U

gr − E
Un,k

gr

∣∣∣∣ ≤
(
c′d · (log n)2− 1

k

n1− 1
k

) k
2

(6.5.17)

for some absolute constant c′ ≥ 1.

We now have all the ingredients to complete the proof. For each r, we have

E
Dn,k,U

gr = P
Dn,k,U

[gr(x) = 1]

≥ P
Dn,k,U

[fn,k,U(x) = 1]− P
Dn,k,U

[fn,k,U(x) = 1, gr(x) = 0]

≥ 2−k − P
Dn,k,U

[fn,k,U(x) = 1, gr(x) = 0], (6.5.18)

where the last step uses (6.5.13). Similarly,

E
Un,k

gr = P
Un,k

[gr(x) = 1]

≤ P
Un,k

[fn,k,U(x) 6= 0] + P
Un,k

[fn,k,U(x) = 0, gr(x) = 1]

≤ 2−k−1 + P
Un,k

[fn,k,U(x) = 0, gr(x) = 1], (6.5.19)
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where the last step uses (6.5.12). Passing to expectations in (6.5.18) and (6.5.19)

with respect to r gives

E
r

[
E

Dn,k,U
gr − E

Un,k
gr

]
≥ 2−k−1 − E

r
P
Dn,k,U

[fn,k,U(x) = 1, gr(x) = 0]

− E
r

P
Un,k

[fn,k,U(x) = 0, gr(x) = 1],

which in view of (6.5.15) and (6.5.16) simplifies to

E
r

[
E

Dn,k,U
gr − E

Un,k
gr

]
≥ 2−k−1 − 2ε.

Comparing this lower bound with (6.5.17), we arrive at(
c′d · (log n)2− 1

k

n1− 1
k

) k
2

≥ 2−k−1 − 2ε.

Taking ε = 2−k−3 and solving for d, we find that

Rdt
2−k−3(fn,k,U) = Ω

(
n1− 1

k

(log n)2− 1
k

)
.

By the error reduction formula (6.5.1), this settles (6.5.10) and (6.5.11). �

Theorem 6.44 settles Theorem 6.1 from the introduction. Corollary 6.2 now follows

from (6.5.5) and Theorem 6.1 by taking k = d1/εe + 1 and γ = 1/6. Similarly,

Corollary 6.3 follows from (6.5.5) and Theorem 6.1 by setting γ = 1/6 and taking

k = k(n) to be a sufficiently slow-growing function.
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CHAPTER 7

Conclusion

In this dissertation, we studied communication with regard to the following questions:

1. how do we handle noise; 2. what is the communication complexity of certain

computational tasks; and 3. what is the relationship between quantum and classical

communication. We put these questions in concrete problems and were able to give

very satisfying answers to them. We review these results one by one.

Communication against noise. In Chapter 4, we studied the BGMO corrup-

tion model of substitutions, insertions and deletions. We showed that there is an

interactive coding scheme that uses a constant-size alphabet and achieves the optimal

noise tolerance rate, at the expense of a constant-factor overhead in communication

complexity compared to π.

There are two notable features of our coding scheme. First, we use the combinatorial

structure of tree code. As discussed, the existence of a (1 − δ)-tree code was shown

using probabilistic methods. Although we can always construct a (1− δ)-tree code of

depth n by exhaustive search, it is desirable to have a construction that is efficient.

Progress in this direction is reported in [23, 19, 61, 20, 60, 49].

Open Problem 7.1. Is there an efficient way to construct a (1 − δ)-tree code for

δ ∈ (0, 1)?

Second, to tolerate the maximum noise rate we used a large alphabet. What if we

stick to a small-size alphabet? Assume the standard model, where every corruption
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is a substitution. When the size of the alphabet can be an arbitrary constant, every

protocol has a coding scheme with a linear rate that can tolerate a corruption rate of

1/4 − ε for any ε > 0. For the binary alphabet, however, the optimum rate is only

known to be between 5
39
− ε and 1

6
[51, 52].

Open Problem 7.2. What is the maximum corruption rate that can be tolerated

using interactive coding with a constant code rate and a binary alphabet?

Sign-representations. In Chapter 5, we studied the sign-representations of

AC0. We proved essentially optimal threshold degree and sign-rank lower bounds

for AC0. These analytical lower bounds in turn imply our strong lower bounds of

the communication complexity. Moreover, the techniques here are strong and have

implications in other areas of theoretical computer science, like learning theory.

Our threshold degree result for AC0 took advantage of large depth circuits. If we

turn to extremely shallow circuits, there are unsettled problems. Depth-1 circuits are

just the AND and OR functions, which we understand very well. But analyzing the

sign representation of depth-2 circuits is already very challenging. For example, an

important open problem is the quantum query complexity of triangle detection—to

decide if a graph contains a triangle. Contrary to the sophisticated quantum algo-

rithms we have, there is no nontrivial lower bound. Establishing a tight approximate

degree lower bound is currently the most promising approach to this fundamental

problem. Formally, for any graph with vertices labeled by 1, 2, . . . , n, let eij indicates

whether vertices i and j are connected. Then TRIn : {0, 1}n(n−1)/2 → {0, 1} is

TRIn(e) =
∨

1≤i<j<k≤n

eij ∧ ejk ∧ eik.

Open Problem 7.3. Determine the approximate degree of the triangle detection

problem.
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Quantum query/communication complexity. In Chapter 6, we exhibited an

optimal separation between quantum and classical query complexity with respect to

partial functions. This separation then transfers to a near-optimal separation between

quantum and classical communication complexity.

Now, in the query world, our understanding is more or less complete. We know

that the quantum and randomized query complexity can be arbitrarily separated for

partial functions. For total functions we have this cubic separation, and Aaronson et

al. recently proved that the separation is at most quartic [4]. Closing this gap for

total functions is an important open problem.

Open Problem 7.4. Prove or disprove that for any total function f ,

Rdt(f) ≤ (Qdt(f))3.

In communication world, things are more open, especially for total functions. It is a

major open problem to decide if quantum protocols (even with prior entanglement)

can be super-polynomially more efficient than randomized protocols for total func-

tions. The reason why this problem is so challenging is that we lack tools for such

a result. For example, the “lifting” technique will not help since quantum and ran-

domized query complexity are polynomially related. Moreover, many lower bound

techniques (e.g. approximate rank, discrepancy method) for randomized communica-

tion complexity also lower bound quantum communication complexity.

Open Problem 7.5. Is there a (family of) total function f : {0, 1}n → {0, 1} such

that Q∗(f) = (R(f))o(1)?
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