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Abstract. We study the probability of Boolean functions with small max
influence to become constant under random restrictions. Let f be a Boolean
function such that the variance of f is Ω(1) and all its individual influences
are bounded by τ . We show that when restricting all but a ρ = Ω̃((log 1/τ)−1)
fraction of the coordinates, the restricted function remains nonconstant with
overwhelming probability. This bound is essentially optimal, as witnessed by
the tribes function TRIBE = ANDn/C logn ◦ORC logn.

We extend it to an anti-concentration result, showing that the restricted
function has nontrivial variance with probability 1− o(1). This gives a sharp
version of the “it ain’t over till it’s over” theorem due to Mossel, O’Donnell,
and Oleszkiewicz. Our proof is discrete, and avoids the use of the invariance
principle.

We also show two consequences of our above result: (i) As a corollary, we
prove that for a uniformly random input x, the block sensitivity of f at x

is Ω̃(log 1/τ) with probability 1 − o(1). This should be compared with the
implication of Kahn, Kalai and Linial’s result, which implies that the average
block sensitivity of f is Ω(log 1/τ). (ii) Combining our proof with a well-known
result due to O’Donnell, Saks, Schramm and Servedio, one can also conclude
that: Restricting all but a ρ = Ω̃(1/

√
log(1/τ)) fraction of the coordinates of a

monotone function f , then the restricted function has decision tree complexity
Ω(τ−Θ(ρ)) with probability Ω(1).
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1. Introduction

For any Boolean function f : {−1, 1}n → {0, 1}, the individual influence of the
ith coordinate is the probability of flipping the value of f by flipping xi on a random
input x. Let x ⊕ (−1)ei denote the string obtained by flipping the ith coordinate
of x, then

Ii(f) := P
x∈{−1,1}n

[f(x) ̸= f(x⊕ (−1)ei)].

In this paper, we study Boolean functions with small influences, hence functions
satisfying

I∞(f) := max
i∈[n]

Ii(f) = o(1).1

Let Rp denote a p-random restriction, namely, a randomly-chosen subcube where
for each coordinate, one flips a coin and, with probability p one fixes the value of
the coordinate to −1 or 1 (with equal probabilities) and, with probability 1−p, the
coordinate is left undetermined (alive). Then f |Rp

is a random sub-function given
by restricting f to the subcube.

In this paper, we study Boolean functions with small influences under random
restrictions. Our main goal is to prove a lower bound for the probability of the
function to remain nonconstant under the restriction. We prove the following near-
optimal result:

Theorem 1.1 (A simplified version of Theorem 4.1). Given f : {−1, 1}n → {0, 1}
such that the variance of f is Ω(1), and τ := I∞(f) = o(1). Let R1−ρ be a random
restriction where

ρ = Ω

(
log log(1/τ)

log(1/τ)

)
.

Then for any p ≥ I∞(f)Θ(ρ),

P[Var[f |R1−ρ
] ≤ pΘ̃(

1
ρ )] ≤ p.

The bound on the variance is near-optimal by the majority function. In partic-
ular, if f is the majority function, then

P[Var[f |R1−ρ
] ≤ pΘ(

1
ρ )] ≤ p.

Furthermore, our bound on ρ is optimal up to a log log factor. Because randomly
restricting the tribes function with ρ = O(1/ log(1/τ)), we get a constant func-
tion with probability Ω(1). Previously, Mossel et al. proved a similar result for
ρ = Ω(1/

√
log(1/τ)) using completely different techniques [17]. Prior to Mossel et

al.’s work, the related conjecture, with a very suggestive name “it ain’t over till it’s
over” conjecture, was proposed by Kalai and Friedgut in studying social indetermi-
nacy [13, 14]. It implies a quantitative version of the Arrow’s Theorem. We refer
the interested readers to [17] for more discussions.

Next, we discuss a corollary of this theorem to block sensitivity of functions with
small influences. The sensitivity of an input x with respect to Boolean function

1For the rest of the paper, we consider the function f as a family of functions. Thus here by
o(·), we mean “as n goes to infinity.” The bound o(1) on the influences is worse than needed. For
illustration, this is good enough as many examples we are interested in this paper satisfy that
their influences are o(1).
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f , denoted sf (x) :=
∑

i∈[n][f(x) ̸= f(x ⊕ (−1)ei)], is the number of the Hamming
neighbors of x which have a different function value. An inequality by Kahn, Kalai
and Linial [12] asserts that

E
x
[sf (x)] = Ω

(
log

Var[f ]

I∞(f)

)
,

which naturally leads to the question of whether it is also true that sf (x) =

Ω
(
log 1

I∞(f)

)
for a typical point x. This is clearly not the case, as witnessed by the

majority function. However, a corollary to our theorem is that such an estimate
does indeed hold true for most points x, if sensitivity is replaced by the related
notion of block sensitivity.

The block sensitivity of an input x with respect to function f , denoted bsf (x)
is the maximum number of disjoint sets S1, S2, . . . , Sm ⊆ [n], such that for i ∈ [m],
one has f(x) ̸= f(x⊕(−1)1Si ), by x⊕(−1)1Si we mean flipping the sign of variables
in Si. Clearly,2 one has bsf (x) ≥ sf (x) for all f, x. Our second result shows that
for functions with small influences, the block sensitivity is large on almost all points
x:

Theorem 1.2. For any function f : {−1, 1}n → {0, 1} such that its variance is
Ω(1), and τ := I∞(f) = o(1). Then

P
x
[bsf (x) ≥ Ω̃(log 1/τ)] = 1− o(1).

Finally, if the function f is monotone in addition to having small influences,
our analysis to Theorem 1.1 implies an upper bound on the influences of f under
random restrictions. In the work due to O’Donnell et al. [18], it is proved that every
shallow decision tree must have an influential variable. Combining these facts, one
can also conclude that, for monotone function f , the restricted function will have
large decision tree complexity. In particular, let DT(f) denote the decision tree
complexity of f . Then,

Theorem 1.1. For any monotone function f : {−1, 1}n → {0, 1} with Ω(1) vari-
ance, and τ = I∞(f) = o(1). Then for any ρ = Ω̃(

√
1/ log(1/τ)),

P[DT(f |R1−ρ) = τ−Θ(ρ)] ≥ 1

2
.

The above theorem is, in a sense, a reverse statement to the Håstad switching
lemma, which states that applying the (1−O(1/ log n))-random restriction to any
polynomial-size DNF/CNF (or in general any AC0 circuits), one gets a shallow
decision tree with high probability. Our result, on the contrary, states that ran-
dom restrictions with alive probability Ω̃(1/ log(I∞(f))) cannot simplify f to a too
shallow decision tree for monotone functions f with low influences.

Context and related works. The notion of influences studied in this paper is
first introduced by Ben-Or and Linial [4] in the context of collective coin flip-
ping. It coincides with the “Banzaf index” studied in game theory. The class of
Boolean functions with small influences have been widely studied. There are sev-
eral motivations to study such functions. First, they arise naturally in social choice
theory [13, 14]. For example, in a voting system of two candidates and n voters,

2By taking singleton sets above.
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each bit xi represents the individual preference of each voter between the two can-
didates. When aggregating the social preference, it is natural to use a function
f where the potential of any given individual to determine the final outcome is
limited. Second, from an algorithmic perspective, suppose that we have access to
the input via a limited number of queries. Then, it is natural to query a variable
when its individual influence is large. In many cases, such variables can be found
iteratively and this process leads to a good approximation of f with a small number
of queries. This observation has been applied in different settings [8, 1]. In com-
putational complexity, to distinguish the dictatorship function v.s. functions with
small individual influences is a key component of proving optimal NP-hardness for
approximations [3, 10, 11, 15]. From an analytic perspective, it has been observed
that functions with small influences exhibit improved concentration inequalities
(e.g., [20]) and often tend to exhibit Gaussian-like behavior [17].

Applying random restrictions and studying the properties of the restricted func-
tions has been widely studied and has led to breakthroughs in a variety of areas. For
example, it is the key idea of the exponential lower bounds in circuit complexity [9]
and the dramatic improvements of the sunflower lemma in combinatorics [2].

The problem of determining whether a function with small influences becomes
constant under random restrictions has attracted some attention in the context of
hardness amplification within NP for circuits [19].

A sub-optimal version of Theorem 1.1 follows from the “It ain’t over till it’s over”
theorem proven by Mossel, O’Donnell, and Oleszkiewicz in [17]. Their approach
uses the invariance principle, which at a high level asserts that when feeding a
“smooth”3 function f with independent random inputs X1, X2, . . . , Xn from a prod-
uct space such that each Xi has zero mean, unit second moment and bounded third
moment, then the output distribution is “invariant” to the actual distribution of the
inputs. This approach usually studies a related problem, then translates the result
of the related problem to the Boolean cube. This translation suffers from two draw-
backs. First, it obscures what is actually happening in Boolean cube. Second, the
requirement of f being “smooth” normally requires additional technical treatment,
and becomes the main obstacle for obtaining an optimal result.

Our approach. Our approach relies on a control-theory point of view to the prob-
lem combined with ideas from “pathwise-analysis,” using arguments which are some-
what inspired by [7]. We assume that the coordinates are revealed in a random
order and are randomly assigned values ±1 one by one. For each coordinate be-
ing revealed, we assume that with probability ρ a player gets an opportunity to
“override” the value that has been assigned to that coordinate.4If the player has the
capability of deciding, with high probability, the value of the function, this implies
that restricting all but a ρ-fraction of coordinates leaves the restricted function
nonconstant.

3By “smooth” here, we mean f has low degree. With additional work, the invariance principle
applies to f that has its Fourier mass concentrated in low degrees.

4We note that Lichtenstein-Linial-Saks [16] also study a control theoretic problem, which in
the surface may seem similar. The main difference is that in their model the player picks which
coordinates to influence, whereas in our model these coordinates are picked randomly, as we will
see momentarily. The two models differ drastically in their nature.
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To this end, assume that X(t) ∈ {−1, 0, 1}n is the process where at each step
another coordinate is being revealed, where coordinates whose value is not deter-
mined are set to 0. We view our Boolean function f as a function f : Rn → R by
considering its multilinear extension. If the player does not override any coordinate,
then the process M(t) := f(X(t)) is a martingale (where, for x ∈ {−1, 0, 1}n, the
expression f(x) is the value of f when taking expectation over coordinates whose
value is set to 0). The player’s ability to override coordinates effectively allows the
player to add a drift to M(t), where the player’s goal is to end up with M(n) being
equal to 1 (or, by the same argument, to 0 simply by replacing f with 1− f).

At this point, let us assume for simplicity that the increments of the martingale
M(t) have a fixed step size η (in other words, assume that it is actually a random
walk up to the time when it hits {0, 1}). Moreover assume that M(0) is bounded
away from {0, 1}. Suppose that the player has probability ρ to override each step
and is trying to force the process to end up at the value 1 by overriding the increment
with the value +η. In this case over t steps the process accumulates a variance of
η2t and a drift of size tρη. Since the process eventually moves a distance of Ω(1),
and hence accumulates a variance of constant order, we have t ≍ η−2. It follows
that in order for the effect of the drift to be more significant than that of the
variance, one arrives at the condition ρ ≫ η. In other words, the process can be
efficiently controlled (meaning that the player gets to determine its endpoint) as
long as the step size is at most ρ. In fact, we will see that this heuristic is only
correct when M(t) is not close to the edges, which will create an additional technical
complication.

The step size of the process is, in turn, is controlled by the ℓ∞ norm of the
first-order Fourier coefficients of restrictions of the function f , or equivalently by
the quantity maxi |∂if(X(t))|, where i is over the coordinates not fixed at time t.
We need to show that this quantity remains small along the process, which is where
the fact that the initial influences are small will be used.

The control of the first-order Fourier coefficients relies on a new hypercontractive
inequality for random restrictions. We consider random restrictions Rp,Rq, where
0 ≤ p ≤ q ≤ 1 are the probabilities of a variable being fixed, and show that for any
multilinear function f and any 0 ≤ ϵ ≤ q − p,

(E[µ(f |Rp)
2+ϵ])

1
2+ϵ ≤ (E[µ(f |Rq )

2])
1
2 , (1.1)

where we use µ(f) to denote the expected value of f over the uniform measure on
{−1, 1}n.

The hypercontractive inequality will allow us to control the evolution of the first-
order coefficients under the original (namely, the uncontrolled) martingale. How-
ever, we need to control those coefficients under the “controlled” process (where
the player gets to override some coordinates). This can be solved by assuming
that the strategy taken by the player tries to mimic yet another process obtained
by conditioning the original martingale M(t) to end up at the value 1 (0, respec-
tively). This amounts to a change of measure over the space of paths of X(t) which
gives tractable formulas for the corresponding change of measure of a single step.
Equivalently, this is the strategy which ensures ending up at the desired value un-
der a change of measure which has the minimal possible relative entropy to the
uncontrolled process.

Finally, we explain how to strengthen the above result to give a quantitative
bound on the variance of the restricted function. We analyze the Kullback-Leibler
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divergence between, roughly speaking, the string Y (n) generated by the “con-
trolled” process given the restrictions R1−ρ determined by those coordinates that
is not controlled by the player, and a uniformly random string X ∈ {−1, 1}n.
With the Fourier-analytic tool of Level-1 inequality, one can show that the ex-
pected KL-divergence over the random restrictions is about Õ(1/ρ). Somewhat
surprisingly, the KL-divergence is, in addition to being small in expectation, highly
concentrated. Recall that Y (n) is sampled from f−1(1). All these imply that
µ(f |R1−ρ

) ≥ exp(−Õ(1/ρ)) with high probability. The variance bound then follows
once we put together with the other direction that µ(f |R1−ρ) ≤ 1− exp(−Õ(1/ρ))
by replacing f with 1− f .

Organization. We present the necessary preliminaries in Section 2. Then in Sec-
tion 3, we carefully define the uncontrolled and controlled process discussed in the
introduction and we study the properties of these random processes. With this
tool at our disposal, we prove our main result Theorem 1.1 in Section 4. Then we
explain the applications of this result to the block sensitivity, decision tree com-
plexity and social choice theory. We leave the technical analysis to the final section,
Section 5, that the Fourier coefficients of the first order remain small under random
restrictions .

2. Preliminaries

General. We adopt the the shorthand notation [n] for the set {1, 2, . . . , n}. For a
string x ∈ {−1, 1}n and a set S ⊆ {1, 2, . . . , n}, we let x|S denote the restriction of x
to the indices in S. In other words, x|S = xi1xi2 . . . xi|S| , where i1 < i2 < · · · < i|S|
are the elements of S. Analogously, for any function f : Ω → R over an arbitrary
domain Ω. Let A ⊆ Ω, we adopt the notation f |A for the sub-function of f over
the domain A. Namely, f |A(x) = f(x) for x ∈ A. Given a set S, when the universe
U is clear from the context we use S̄ := U \S to denote the complement of S. The
characteristic function of a set S is given by

1S(i) =

{
1 if i ∈ S,

0 otherwise.

For a permutation π : U → U . Let πS be the permuted set of S, i.e., πS = {π(i) :
i ∈ S}.

The primary interest of this paper is Boolean functions f : {−1, 1}n → {0, 1}.
Note that we use −1, 1 to denote “true” and “false” on the domain of f , respectively.
For example, the logic AND function and the logic OR function are defined as below,

n∧
i=1

xi =

{
1 xi = −1 ∀i ∈ [n],

0 otherwise,

n∨
i=1

xi =

{
0 xi = 1 ∀i ∈ [n],

1 otherwise.

We abuse the notation x ⊕ y to denote the entrywise XOR function for x, y ∈
{−1, 1}n. Thus (x ⊕ y)i = xi · yi. For any univariate function h : R → R and
x ∈ Rn, the application of h to x means entrywise application, i.e., h(x) denotes
the vector such that (h(x))i = h(xi). For any f : {−1, 1}n → R, S ⊆ {1, 2, . . . , n}
and y ∈ {−1, 1}n, let cubeS,y := {x ∈ {−1, 1}n : x|S = y|S} be the subcube of
{−1, 1}n. We abbreviate f |(S,y) = f |cubeS,y

. The same definition f |(S,y) extends to
y ∈ RT for any T ⊇ S such that y|S ⊆ {−1, 1}S . A random p-restriction Rp is a
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random tuple (S, y) such that for each i ∈ [n], i ∈ S with independent probability
p, and y is a uniformly random element from {−1, 1}n.

For a logical condition C, we use the Iverson bracket

I{C} =

{
1 if C holds,
0 otherwise.

Denote |x| the length of x for any vector x ∈ Rn, i.e.,

|x| =

(
n∑

i=1

x2
i

)1/2

.

For two vectors x, y ∈ Rn, we adopt the following inner product

⟨x, y⟩ =
∑
i∈[n]

xiyi.

The set {e1, e2, . . . , en} forms a standard basis, where ei denotes the vector whose
only nonzero coordinate i is 1.

Given some discrete space Ω and a probability measure γ over Ω. If the random
variable X is drawn from γ, we denote it by X ∼ γ. For any function f : Ω → R,
we often abbreviate the expectation of f over γ as γ(f), namely,

γ(f) :=
∑
x∈Ω

f(x)γ(x).

We let lnx and log x stand for the natural logarithm of x and the logarithm of x to
base 2, respectively. For any distribution γ over some discrete space Ω, the entropy
function

H(γ) = E
x∈Ω

γ(x) log
1

γ(x)
.

When Ω contains only two elements, we can think of the binary entropy function
H : [0, 1] → [0, 1] as given by

H(x) = x log
1

x
+ (1− x) log

1

1− x
.

Basic calculus reveals that for x ∈ [−1, 1],

1−H(x) ≤ 4

(
x− 1

2

)2

. (2.1)

Recall that the Kullback-Leibler divergence (KL-divergence) between two distribu-
tions µ0, µ1 over Ω is defined by the following formula

KL(µ0 ∥µ1) =
∑
x∈Ω

µ0(x) log
µ0(x)

µ1(x)
.

The KL-divergence is convex. In particular, let µ0, µ1, γ0, γ1 be distributions over
the same space. Then for any λ ∈ [0, 1],

KL(λµ0 + (1− λµ1) ∥λγ0 + (1− λγ1)

≤ λKL(µ0 ∥ γ0) + (1− λ)KL(µ1 ∥ γ1).
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If two random variables X0, X1 obey µ0 and µ1, respectively, we also use KL(X0 ∥X1)
to denote the KL-divergence between the two distributions. The KL-divergence sat-
isfies the following chain rule:

KL(X0Y0 ∥X1Y1) = KL(X0 ∥X1) + E
x∼X0

[
KL

(
Y0 | X0 = x

Y1 | X1 = x

)]
.5,6

The following simple analytical fact will be useful for us.

Fact 2.1. Given x, p ∈ R, then

(i) (1 + x)p ≥ 1 + xp, for any x > −1, and p ≥ 1.
(ii) (1 + x)p ≤ 1 + xp, for any x > −1, and 0 ≤ p ≤ 1.

Proof. Let g = (1 + x)p − 1− xp be a function on x. Then

g′ = p(1 + x)p−1 − p. (2.2)

When p > 1, (2.2) is negative for x ∈ (−1, 0) and nonnegative for x ≥ 0. Thus, g
is decreasing in the interval x ∈ (−1, 0) and increasing in (0,∞). Plug x = 0 into
g, we get 0. Therefore, (1 + x)p ≥ 1 + xp. When 0 < p < 1, (2.2) is positive for
x ∈ (−1, 0) and nonpositive for x ≥ 0. Hence g attains its maxima within (−1,∞)
at point x = 0. □

Discrete Fourier analysis. Let f : {−1, 1}n → {0, 1} be any Boolean function.
We would often treat f as a function f : [−1, 1]n → [0, 1] or f : Rn → R by
considering its multilinear extension, i.e.,

f(x) =
∑
S⊆[n]

f̂(S)χS ,

here χS is the abbreviation of
∏

j∈S xj . An important observation is that under
this notation,

f(0) = E
x∈{−1,1}n

[f(x)].

The set {χS}S⊆[n] is a complete orthogonal basis of the space R{−1,1}n

. Further,

2−n⟨χS , χT ⟩ =

{
1 S = T,

0 S ̸= T.

Thus, for any f, g : {−1, 1}n → R, we have the following by Parseval’s identity and
Plancherel Theorem,

2−n⟨f, g⟩ =
∑
S⊆[n]

f̂(S)ĝ(S). (2.3)

E
x∈{−1,1}n

[f2] =
∑
S⊆[n]

f̂(S)2. (2.4)

5We refer the interested readers to [6] for a complete treatment on these facts.
6Here, we use the fraction-like notation to also denote the KL-divergence for aesthetics, as

we are comparing two conditional distributions. The numerator in the fraction-like notation
corresponds to the first argument in the standard notation.
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Adopt the following notations for partial derivatives and the vector differential
operator,

∂if(x) =
∑
S∋i

f̂(S)χS\{i},

∇f = (∂1f, ∂2f, . . . , ∂nf).

For functions on Boolean cubes, by considering their multilinear extensions it’s easy
to see that the above definitions work exactly as expected: For any δ ∈ R,

f(x+ δei)− f(x) = δ · ∂if(x).
An important fact about the weight of the Fourier coefficients is the following
inequality, often referred to as the Level-1 inequality.

Theorem 2.2 (Level-1 inequality [21]). Let f : [−1, 1]n → {0, 1} be the multilinear
extension of a Boolean function. Then for some absolute constant C, we have

|∇f(0)|2 ≤ Cf(0)2 log
e

f(0)
.

We adopt the following standard definitions of the individual influence and the
max influence of function f :

Ii(f) = E
x∈{−1,1}n

[∂if(x)
2].7

I∞(f) = max
i∈[n]

Ii(f).

By Plancherel Theorem,

Ii(f) =
∑

S⊆[n]: i∈S

f(S)2.

The variance of f is the following

Var[f ] = E
x∈{−1,1}n

[f2]− E
x∈{−1,1}n

[f ]2.

It is clear that

Var[f ] ≤
n∑
i

Ii(f).

Below is a straightforward corollary of the above inequality.

Fact 2.3. If Var[f ] = 2−o(n), then

I∞(f) = 2−o(n).

Martingales. Recall that a discrete-time martingale is a sequence of random vari-
ables X0, X1, X2, . . . , that satisfies
• For each n = 0, 1, 2, . . . , E[|Xi|] < ∞.
• For any m < n, E[Xm | Xn] = Xn.

A continuous-time martingale is a stochastic process (Xt)t≥0 such that
• For any t, E[|Xt|] < ∞.
• For any s < t, E[Xt | Xs] = Xs.

7In fact, Ii(f) should be Ex∈{−1,1}n [4∂if(x)
2]. But since we are only interested in functions

with small max influence, this constant does not matter to us.
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A submartingale is a stochastic process with the second property from the above
definition replaced by

E[Xt | Xs] ≥ Xs.

Fact 2.4. Let Xt, Yt be martingales.
(i) aXt + bYt and Xt · Yt are also martingales for any constant a, b. Hence any

multilinear function of martingales is a martingale.
(ii) If f : R → R is a convex function, then the process f(Xt) is a submartingale.

The stopping time τ of a stochastic process is a random variable such that the
event {τ ≤ t} is completely determined by X≤t. Given two stopping times τ1, τ2,
let τ1 ∧ τ2 denote the new stopping time min{τ1, τ2}. For martingales, we have the
optional stopping theorem.

Theorem 2.5 (Stopping Theorem). If τ is almost surely bounded, then

E[Xτ ] = E[X0].

For submartingales, the equality is replaced by a greater-than inequality. Finally,
the following inequalities will be useful for us.

Theorem 2.6 (Doob’s martingale inequality). Let X be a submartingale taking
real values. Then for any constant C ≥ 0,

P
[

sup
0≤t≤T

Xt ≥ C

]
≤ E[max{XT , 0}]

C
.

Theorem 2.7 (Concentration inequality [5, Theorem 2.21]). Let X1, X2, . . . , Xn

be martingales with filtration F , such that for i = 1, 2, . . . , n

Var[Xi | Fi−1] ≤ σ2
i ,

Xi −Xi−1 ≤ M.

Then

P[X ≥ λ] ≤ exp

(
− λ2

2
∑

σ2
i + 2Mλ/3

)
.

Finally, we should warn the readers that in this paper, often X is a vector and
the subscripts are used for coordinates. In that case, the random process X is
denoted X(t), and Xi(t) denotes the evolution of each individual coordinate.

3. Controlled Process

Fix a function f : {−1, 1}n → {0, 1}, and we view f : Rn → R by considering
its multilinear extension. We assume that f is not a constant function. Therefore
f(0) > 0. In this section, we will consider three different discrete random pro-
cesses. The first one is the uniform process X(t) ∈ {−1, 0, 1}n for t ∈ {0, 1, . . . , n}.
It’s called the uniform process because X(n) will be a uniformly random string
from {−1, 1}n. The second process Y (t) is obtained from X(t) by conditioning
on f(X(n)) = 1. Therefore, we call Y (t) the conditioned process. The third pro-
cess is in effect the same as the second process. They have identical distributions.
However, we will take the control theory perspective, and give a player a small
number of random coordinates to control. We show that the player will be able to
alter a process to the conditioned process, which is otherwise the uniform process.
Therefore we sometimes call the third process the controlled process.



AN OPTIMAL “IT AIN’T OVER TILL IT’S OVER” THEOREM 11

First, we consider the following uniform process X(t) for t = 0, 1, 2, . . . , n, such
that X(t) ∈ {−1, 0, 1}n, and X(0) = 0n.

Procedure 1 (To generate the discrete uniform process X(t)):
Sample a uniformly random permutation π : [n] → [n].
For time t = 1, 2, . . . , n

• Let i = π(t). Set Xi(t) to be −1 or 1 uniformly at random.
• For all j ∈ [n] \ {i}, set Xj(t) := Xj(t− 1).

Clearly, the above process is just another way to sample a random element from
{−1, 1}n. We use the notation P to denote the probability measure over the paths of
the above process. The subscript P will be used to emphasize the underlying process
and the corresponding measure. For example, EP [f ],PP [E ] are the expectation of
the function f and the probability of the event E , respectively, both defined over the
space of the paths of the above process X(t). A crucial component of our analysis
is that all the partial derivatives of f(X(t)) will be small with high probability for t
even very close to n. We formulate it as the following lemma, whose proof requires
some technical preparations, and is therefore deferred to Section 5.4.

Lemma 3.1. Let ϵ > 08 be such that
16

ϵ
ln

4

ϵ
≤ ln

1

I∞(f)
.

Then for any θ ∈ (0, 1),

PP

[
max

0≤t≤(1−ϵ)n
|∂if(X(t))| ≥ θ

]
≤ θ−3I∞(f)

ϵ
16 + exp(−ϵn/8).

Next, we modify Procedure 1 to generate what we call the conditioned process.
The goal is to guarantee that the new process ends up being a random element
sampled from f−1(1). We use Y (t) to distinguish this new process from X(t). Let
Q be a new probability measure defined by the equation

PQ[Yi(t) = ±1 | Y (t− 1), π(t)] :=
1

2
± ∂if(Y (t− 1))

2f(Y (t− 1))
. (3.1)

A calculation shows that the Radon-Nykodym derivative of the two measures sat-
isfies that for any realization y(1), y(2), . . . , y(s) ∈ {−1, 0, 1}n of the process Y (t)
up to time s,

dQ
(
(y(t))1≤t≤s

)
dP
(
(y(t))1≤t≤s

) =

s∏
t=1

2PQ[Yπ(t)(t) = yπ(t)(t) | Y (t− 1) = y(t− 1)]

=

s∏
t=1

(
1 + yπ(t)(t)

∂π(t)f(y(t− 1))

f(y(t− 1))

)

=

s∏
t=1

f(y(t))

f(y(t− 1))

=
f(y(s))

f(0)
. (3.2)

8Throughout this section, let’s assume that ϵn is a positive integer.



AN OPTIMAL “IT AIN’T OVER TILL IT’S OVER” THEOREM 12

By taking s = n above, we see that the process Y (t) according to Q is equivalent to
the same process X(t) according to P , only conditioned on the event that f(X(n)) =
1. In particular, according to Q, Y (n) is just a uniformly random element from
f−1(1). Further, if we sample Y (t) and let R(t) be the restriction induced by Y (t),
then (f |R(t))

−1(1) is nonempty for any t as long as f is not the constant 0 function.
We record this simple but useful observation that Q is a mild change of measure of
P .

Claim 3.2. Let Et be some event that depends only on the paths of the random pro-
cess up to time t, e.g., X(1), X(2), . . . , X(t) according to P or Y (1), Y (2), . . . , Y (t)
according to Q. Then for any t ∈ [n],

PQ[Et] ≤
PP [Et]
f(0)

.

Proof. This is immediate from (3.2),

PQ[Et] = EP

[
I{Et} ·

dQ

dP

]
≤ PP [Et]

f(0)
. □

We summarize the distribution of the “conditioned” process Y (t) according to Q:

Procedure 2 (To generate the conditioned process Y (t)):
Sample a uniformly random permutation π : [n] → [n].
For time t = 1, 2, . . . , n:
• Let i = π(t). Set Yi(t) according to the following distribution

P[Yi(t) = ±1] =
1

2
± ∂if(Y (t− 1))

2f(Y (t− 1))
,

• For all j ∈ [n] \ {i}, set Yj(t) := Yj(t− 1).

A control-theory point of view. The next step will be to consider the above
process as a controlled version of the conditioned process Y (t). Fix ϵ > 0 and
consider the control problem where at each time t, with probability 1 − ϵ, Y (t)
does a uniformly random step (according to Procedure 1), and with probability ϵ
a player gets to determine the sign of Yπ(t) according to her own choosing.

The key observation of this section is that as long as the player can control
a small fraction of random coordinates, she can simulate the conditioned process
exactly. The motivation to study this controlled version of Y (t) is the following: The
randomly fixed coordinates out of the player’s control induces a random restriction
of the function f . If the player can assign the values to the coordinates of her
control, that is the alive coordinates of the corresponding random restriction, to
end up in f−1(1), this means the restricted function has a nonempty preimage of
1.

To this end, we consider the following procedure (see Procedure Π) that generates
the conditioned process Y (t) as well as the uniform process X(t).

The Procedure Π starts with a sampling subroutine as the preparation stage,
then followed by two phases that generate Y (t) for time t from 0 to n. The first
phase corresponds to that described in the first paragraph of this section. During
this phase the player needs to cherish her rare opportunity and play “aggressively.”
The second phase starts at a point of time τ when the aggressive strategy no longer
works. However, we will show that τ is very close n with high probability. As a
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result, it would not be a problem to give the player full control from now on and
let her play “safely” till the end.

Procedure Π (The controlled version of processes Y (t) and X(t)):
# Sampling Subroutine
• Sample a uniformly random permutation π : [n] → [n].
• Sample a set T ⊆ {1, 2, . . . , n}, such that independently for each i ∈ [n],

P[i ∈ T ] = ϵ.

T will be the set of times when the player gets to determine the value of the
coordinate.

• Sample a uniformly random z ∈ {−1, 1}πT̄ , the random assignment to the
variables not controlled by the player.

# Phase 1
Set Y (0) = X(0) = 0n.
For time t = 1, 2, . . . , n:
• Let i = π(t).
• (Coordinate picked uniformly) If t ̸∈ T , set Yi(t) = Xi(t) = zi.
• (Coordinate determined by player) If t ∈ T , set Yi(t) and Xi(t) according to

the following distributions

P[Yi(t) = ±1] =
1

2
± 1

2ϵ
· ∂if(Y (t− 1))

f(Y (t− 1))
,

P[Xi(t) = ±1] =
1

2
.

• For all j ∈ [n] \ {i}, set Yj(t) := Yj(t− 1), Xj(t) := Xj(t− 1).
• If either of the following holds, exit this loop

max
i∈[n]

|∂if(Y (t))| > ϵδ, f(Y (t)) < δ. # the breaking condition

# Phase 2
While t < n:
• t = t+ 1.
• Let i = π(t). Set Yi(t) and Xi(t) according to the following distributions

P[Yi(t) = ±1] =
1

2
± ∂if(Y (t− 1))

2f(Y (t− 1))
,

P[Xi(t) = ±1] =
1

2
.

• For all j ∈ [n] \ {i}, set Yj(t) := Yj(t− 1), Xj(t) := Xj(t− 1).

Output {Y (t)}t∈{0,1,...,n}, {X(t)}t∈{0,1,...,n}.

The process Y (t) will be the main process with which our analysis concerns,
whereas the process X(t) is only defined for the sake of entropy comparison: We
will later argue that the KL-divergence between the two processes is not too large. It
is evident that in Phase 1 the distribution of Y (1), Y (2), ... according to Procedure
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Π is identical to its distribution according to measure Q as long as

|∂π(t)f(Y (t− 1))| ≤ ϵf(Y (t− 1)). (3.3)

Indeed, if (3.3) holds, we have

P[Yπ(t)(t) = ±1] = (1− ϵ)
1

2
+ ϵ

(
1

2
± 1

2ϵ
·
∂π(t)f(Y (t− 1))

f(Y (t− 1))

)
=

1

2
±

∂π(t)f(Y (t− 1))

2f(Y (t− 1))
.

Let time τ be n + 1 if the breaking condition is never hit, otherwise let τ be the
time when the breaking condition is hit. The reader may wonder that a more
natural choice of the “breaking” condition would be the violation of (3.3). Our
definition forces that (i) f(Y (τ − 1)) is large, in addition to that (ii) all derivatives
|∂if(Y (τ − 1))| is small compared to the magnitude of f(Y (τ − 1)). Both facts
will be very useful in later sections. Formally, we summarize our definition of τ as
below,

τ = τ1 ∧ τ2 ∧ (n+ 1), (3.4)

where

τ1 = min{t : max
i∈[n]

|∂if(Y (t))| > ϵδ}.

τ2 = min{t : f(Y (t)) < δ}.

The values of the parameters ϵ, δ will be specified later on. By definition, the
condition (3.3) holds for t < τ . We should think τ as a stopping time of Phase
1. After the stopping time τ , the player gets to control each coordinates left. She
simply assigns the values according Q as in Procedure 2. Since in both phases
Procedure Π has the same law as that of Q, the controlled process Y (t) defined
in procedure Π is identical in distribution to the conditioned process Y (t) defined
in Procedure 2. The same is clearly true for the uniform process X(t) in its two
versions (Procedure 1 and Procedure Π).

In the preparation stage, Procedure Π samples a random permutation π, a set
T of times controlled by the player and z the random assignment to the variables
not controlled by the player. For every m ∈ [n], let Gm be the σ-algebra generated
by

π|{1,2,...,m}, T ∩ {1, 2, . . . ,m}, and z|π{1,2,...,m}.

Thus, Gm contains all the information in a run of Procedure Π, excluding the
player’s choices, up to time m. Also, Gm induces a restriction of T :9

R = (π({1, 2, . . . ,m} \ T )), z).

A moment’s thought reveals that if the controlled process Y (t) in a run of Procedure
Π satisfies that τ > m, then f |R contains a nonempty preimage of 1.

Claim 3.3. If P[τ > m | Gm] > 0, then (f |R)−1(1) ̸= ∅.

9We can also consider any restriction R = (S, z) for S ⊆ π({1, 2, . . . ,m} \ T ). We will use this
observation in later sections.
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Therefore, if we can argue that τ > m running Procedure Π on f and 1 − f
with the same Gm, then we actually proved that f |R is nonconstant. To give a
quantitative bound on the variance of f |R requires some more work. The above
discussion sets two tasks for the remainder of this section. First, to analyze the
stopping time τ and second, to provide the necessary tools to bound the variance
of the restricted function.

3.1. Stopping time τ of the process Y (t). Next, we prove that with high
probability τ > (1 − ϵ)n for very small ϵ. Therefore, Phase 2 in Procedure Π can
not be too long.

Lemma 3.4 (Stopping time τ of the process Y (t)). Let f : {−1, 1}n → {0, 1} be
such that Var[f ] ≥ 2−o(n). Further, let ϵ > 0 and δ be such that

16

ϵ
ln

4

ϵ
≤ ln

1

I∞(f)
,

δ ≥ I∞(f)ϵ/80

ϵ
.

Then for sufficiently large n, we have

PQ[τ ≤ (1− ϵ)n] ≤ 3δ

f(0)
.

Proof. The proof relies on the fact that Q is a mild change of measure with respect
to P . Consider the following two bad events,

E1 : τ1 ≤ (1− ϵ)n,

E2 : τ2 ≤ (1− ϵ)n.

We first bound PQ[E1]. Note that

PP [E1] = PP

[
max

0≤s≤(1−ϵ)n
|∂if(X(s))| ≥ ϵδ

]
≤ PP

[
max

0≤s≤(1−ϵ)n
|∂if(X(s))| ≥ I∞(f)ϵ/60

]
≤ I∞(f)ϵ/80 + exp(−ϵn/8),

where the second step holds as ϵδ ≥ I∞(f)ϵ/80 ≥ I∞(f)ϵ/60; the final step applies
Lemma 3.1. The above bound in turn by Claim 3.2 implies that

PQ[E1] ≤
PP [E1]
f(0)

≤ I∞(f)ϵ/80 + exp(−ϵn/8)

f(0)
. (3.5)

Next we move to bound PQ[E2]. It is immediate from Claim 3.2:

PQ[E2] ≤
δ

f(0)
. (3.6)
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Apply union bound to (3.5) and (3.6), then for large enough n,

PQ[τ ≤ (1− ϵ)n] = PQ[E1 ∨ E2]

≤ 1

f(0)
·
(
δ + I∞(f)ϵ/80 + exp(−ϵn/8)

)
≤ 3δ

f(0)

where in the final step we have δ ≥ I∞(f)ϵ/80 = exp(−o(ϵn)) by Fact 2.3. □

3.2. The KL-divergence between Y (t) and X(t). The purpose of this subsec-
tion is to show that for any m ∈ [n], Y (n) given Gm is close to uniform with high
probability over the random choices associated with Gm. In particular, we will show
that the KL-divergence between Y (n) and X(n) given Gm is small with high prob-
ability over the random choices associated with Gm. Recall that the coordinates of
X(n) not fixed by Gm are uniform.

Lemma 3.5. For any m ∈ [n], abbreviate

Gm = (π|{1,2,...,m}, T ∩ {1, 2, . . . ,m}, z|π{1,2,...,m}).

Then for some universal constant C, and ϵ, δ in the breaking condition in Procedure
Π,

P
Gm

[
KL

(
Y (n) | Gm

X(n) | Gm

)
≥ C

ϵ
ln

en

n−m+ 1
log

e

δ

]
≤ δ.

Proof. Let τ ′ = τ ∧ (m+ 1). By definition of the stopping time τ (3.4), for t < τ ′,

f(Y (t)) ≥ δ, (3.7)
|∂if(Y (t))| ≤ ϵf(Y (t)). (3.8)

We calculate the KL-divergence between Y (n) | Gm and X(n) | Gm. By the chain
rule,

KL

(
Y (n) | Gm

X(n) | Gm

)
= E

Gm

τ ′−1∑
t=1

I{t ∈ T}KL

Yπ(t)(t) | Y (t− 1)

Xπ(t)


+KL

Y (n)|π{τ ′,τ ′+1,...,n} | Y (τ ′ − 1)

X(n)|π{τ ′,τ ′+1,...,n}

 ,

where the equality holds because for any t ∈ T ,

(Yπ(t) | Y (t− 1)) = (Yπ(t) | Y (t− 1),Gm),

namely, any variable Yπ(t)(t) controlled by the player is independent of the variables
in the future that she has no control of; and all coordinates in X(n) are independent.

Next, using formula (3.2), combined with (3.7), it follows that for any t ≤ τ ′,

KL

 (Y (n)|π{t,t+1,...,n}
) ∣∣Y (t− 1)

X(n)|π{t,t+1,...,n}


= log

dQ((Y (i))t≤i≤n)

dP ((X(i))t≤i≤n)
= log

1

f(Y (t− 1))
≤ log

1

δ
. (3.9)
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Combining the above two displays,

KL

(
Y (n) | Gm

X(n) | Gm

)
− log

1

δ

≤
n∑

t=1

E
Y (t−1)|Gm

I{t ∈ T}I{t < τ ′}KL

Yπ(t)(t) | Y (t− 1)

Xπ(t)(t)


=

n∑
t=1

E
[
I{t ∈ T}I{t < τ ′}

(
1−H

(
1

2
+

∂π(t)f(Y (t− 1))

2ϵf(Y (t− 1))

))]

≤
n∑

t=1

E

[
I{t ∈ T}I{t < τ ′} 1

ϵ2

(
∂π(t)f(Y (t− 1))

f(Y (t− 1))

)2
]
,

where the second step is by the definition of the KL-divergence; and the final step
is due to (2.1). Abbreviate

Zt := I{t ∈ T}I{t < τ ′}
(
∂π(t)f(Y (t− 1))

f(Y (t− 1))

)2

.

Claim 3.6. There is some universal constant C ≥ 1, such that for any t < τ ′,

Zt | Y (t− 1) ∈ [0, ϵ2], (3.10)

E[Zt | Y (t− 1)] ≤ Cϵ

n− t+ 1
log

e

δ
, (3.11)

Var[Zt | Y (t− 1)] ≤ ϵ2 E[Zt | Y (t− 1)]. (3.12)

Proof. (3.10) follows from (3.8). Let

v(t) :=
(∇f(Y (t− 1)))|π{t,t+1,...,n}

f(Y (t− 1))
.

Then,

E[Zt | Y (t− 1)] = E
π(t)

[ϵv(t)2π(t) | Y (t− 1)]

=
ϵ|v(t)|2

n− t+ 1

≤ Cϵ

n− t+ 1
log

e

f(Y (t− 1))

≤ Cϵ

n− t+ 1
log

e

δ
,

where the first step holds as t ∈ T with probability ϵ; in the second step, π(t) is
random within the n− t+1 alive coordinates given Y (t− 1); the third step follows
the Level-1 inequality of Theorem 2.2; and the final step is due to (3.7).

The variance of Zt | Y (t− 1) can be bounded as follows:

(ϵ2 − E[Zt])E[Zt]−Var[Zt] = E[(ϵ2 − Zt)Zt] ≥ 0.

We comment that such a bound is sometimes referred to as the Bhatia-Davis in-
equality. □
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By (3.11)-(3.12), the definition that τ ′ ≤ m + 1, and the following elementary
fact that

ln(n+ 1) ≤
n∑

i=1

1

n
≤ ln en,

we have
n∑

t=1

E[Zt | Y (t− 1)] ≤ λ, (3.13)

n∑
t=1

Var[Zt | Y (t− 1)] ≤ ϵ2λ, (3.14)

where

λ = Cϵ ln
en

n−m+ 1
log

e

δ
.

The lemma is concluded by estimating,

P

[
KL

(
Y (n) | Gm

X(n) | Gm

)
≥ 3λ

ϵ2
+ log

1

δ

]

≤ P

[
n∑

t=1

Zt | Y (t− 1) ≥ 3λ

]

≤ exp

(
− (2λ)2

2ϵ2λ+ 4ϵ2λ/3

)
≤ exp

(
−C

ϵ
ln

en

n−m+ 1
log

e

δ

)
≤ δ,

where the second step invokes the concentration inequality of Theorem 2.7 since
Zt −E[Zt | Y (t− 1)] is a martingale with respect to Y (0), Y (1), . . . , Y (t− 1). This
finishes our proof to Lemma 3.5 with a change of the constant C. □

4. Proofs of the Main Results

In this section, we prove a sharp “it ain’t over till it’s over” theorem, i.e., the
nonasymptotic version of Theorem 1.1. Then we comment on its optimality, and
discuss its applications to block sensitivity and decision tree complexity.

Theorem 4.1 (“It ain’t over till it’s over”). There are absolute constant C > 1.
Given f : {−1, 1}n → {0, 1}, such that I∞(f) < 1/C and Var[f ] = 2−o(n). Let R
be a random restriction that keeps exactly ⌈ρn⌉ variables alive, where

C

Var[f ]
· ln ln(1/I∞(f))

ln(1/I∞(f))
≤ ρ ≤ 1.

Let p be such that

8I∞(f)ρ/C

ρVar[f ]
≤ p ≤ 1. (4.1)

Then for large enough n,

P
[
Var[f |R] ≤ exp

(
−C

ρ
ln

e

ρ
· log 8e

pVar[f ]

)]
≤ p. (4.2)
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Before proving the above theorem, we record the following simple fact.

Proposition 4.2. Let f : {−1, 1}n → {0, 1} be a Boolean function. Let µ be the
uniform distribution and γ be some arbitrary distribution over {−1, 1}n. If

γ(f) ≥ δ, KL(γ ∥µ) ≤ K.

Then

µ(f) ≥ 2−(K+H(δ))/δ.

In particular, if γ(f) = 1, then

µ(f) ≥ 2−K .

Proof. Assume that γ(f) = δ, and KL(γ ∥µ) = K. This is without loss of generality
because 2−(K+H(δ))/δ is decreasing in K and increasing in δ by elementary calculus.
Let γ0, γ1 be the uniform distributions over f−1(0) and f−1(1), respectively. Note
δγ1 + (1− δ)γ0 = Eπ[γ ◦ π], where π is taken over the product of permutations on
f−1(0) and f−1(1). Thus by convexity,

KL(δγ1 + (1− δ)γ0 ∥µ) ≤ KL(γ ∥µ).

Consequently, let η = µ(f), then

δ log
δ

η
+ (1− δ) log

1− δ

1− η
≤ K

=⇒ δ log
1

η
+ (1− δ) log

1

1− η
≤ K +H(δ)

=⇒ δ log
1

η
≤ K +H(δ)

=⇒ η ≥ 2−(K+H(δ))/δ. □

Next, we set forth to prove Theorem 4.1. Set

ϵ = max
{
η : η ≤ ρ

3
, ηn is an integer

}
, (4.3)

δ = pVar[f ]/8. (4.4)

It’s straightforward to verify that for large enough n, and large enough constant C,
we have

16

ϵ
ln

4

ϵ
≤ ln

1

I∞(f)
, (4.5)

δ ≥ I∞(f)ϵ/80

ϵ
. (4.6)

We will run Procedure Π described in Section 3.2 with the above setting of
parameters ϵ and δ. Recall that Procedure Π first samples the random permutation
π, the set T of times controlled by the player and z ∈ {−1, 1}πT̄ is the random
assignment for t ̸∈ T in Phase 1. Let m = (1 − ϵ)n, U = {1, 2, . . . ,m} \ T. Note
that by a Chernoff bound, the probability that |U | is less than ⌊(1−ρ)n⌋ is at most
exp(−ϵn/2). Conditioning on that |U | ≥ ⌊(1 − ρ)n⌋, we randomly sample a set S
of ⌊(1− ρ)n⌋ elements from U .

Consider the following event

E := {τ > m} ∩ {|U | ≥ ⌊(1− ρ)n⌋}.
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n1
Controlled process 

random T̄controlled T

Random restriction [ [ [ [ [ [ [ [ [ [

[ restricted S ⊆ U = {1,2,…, (1 − ϵ)n}∖T[

n(1 − ϵ)n1

Figure 4.1. Random process and random restrictions

The first event in this intersection can be bounded by Lemma 3.4. Hence, by union
bound,

P[¬E ] ≤ 3δ

f(0)
+ exp(−ϵn/2),

≤ 4δ

f(0)
, (4.7)

where the second step applies Fact 2.3 with (4.6). Conditioning on E ,R = (S, Y (n))
is distributed as a random restriction that keeps ⌈ρn⌉ variables alive. Furthermore,
the restricted function f |R satisfies that its mean is bounded away from 0 with high
probability.

Claim 4.3. For some universal constant C ′ > 1,

P[µ(f |R) < 2−K | E ] ≤ 2δ

P[E ]
, (4.8)

where

K =
C ′

ϵ
ln

e

ϵ
log

e

δ
. (4.9)

Our theorem follows immediately from the above claim. Indeed, if E ′ is defined
analogously to E where f is replaced by 1− f , we have

P[Var[f |R] < 2−K−1]

≤ P[¬E ∨ ¬E ′] + P[µ(f |R) < 2−K | E ] + P[µ(f |R) > 1− 2−K | E ′]

≤ 4δ

f(0)
+

4δ

1− f(0)
+

2δ

P[E ]
+

2δ

P[E ′]

≤ 8δ

Var[f ]
,

where in the first step, note that 2−K < 1/2; the second step plugs in (4.7)-(4.8);
in the final step, note that by (4.4),

P[E ],P[E ′] ≥ 1− 4δ

Var[f ]
= 1− p

2
≥ 1

2
> Var[f ].



AN OPTIMAL “IT AIN’T OVER TILL IT’S OVER” THEOREM 21

In view of (4.2) and (4.9), the proof to Theorem 4.1 is finished. It remains to prove
Claim 4.3.

Proof of Claim 4.3. Recall that m = (1−ϵ)n and U = {1, 2, . . . ,m}\T. Abbreviate

Gm = (π|{1,2,...,m}, T ∩ {1, 2, . . . ,m}, z|π{1,2,...,m}),

the information of the random process generated by Procedure Π excluding the
player’s choices up to time m. Further, let γ be the distribution of Y (n)|πŪ given
Gm. Then by definition of Procedure Π running with with respect to function f ,
γ(f |(πU,z)) = 1. Hence,

P
[
µ(f |(πU,z)) < 2−K | E

]
≤ P

[
KL

(
Y (n) | Gm

X(n) | Gm

)
> K

∣∣∣∣∣ E
]

≤ δ

P[E ]
,

where the first step is due to Proposition 4.2; the second step follows Lemma 3.5
for a suitable constant C ′ in (4.9). Now for any

S ∈
(
{1, 2, . . . ,m}
⌊(1− ρ)n⌋

)
, and y ∈ {−1, 1}πS ,

let ζ(S, y) be the distribution of (U, z) | {(S ⊆ U) ∧ (z|πS = y)}. Then

µ(f |(πS,y)) = E
(U,z)∼ζ(S,y)

[µ(f |(πU,z))].

Thus, by Markov’s inequality µ(f |(πS,y)) < 2−K−1 implies that

P
(U,z)∼ζ(S,y)

[
µ(f |(πU,z)) < 2−K

]
>

1

2
.

Consequently,

1

2
P

π,S,y
[µ(f |(πS,y)) < 2−K−1]

≤ P
π,S,y,(U,z)∼ζ(S,y)

[
µ(f |(πU,z)) < 2−K

]
= P

π,T,z

[
µ(f |(πU,z)) < 2−K

∣∣ {|U | ≥ ⌊(1− ρ)n⌋}
]

≤ δ

P[E ]
.

In view of (4.8), we are done. □

Remark 4.4. If we consider the random restriction that keeps each variable alive in-
dependently with probability ρ, the same statement holds with a slight modification
on the proof to the corresponding version of Claim 4.3.



AN OPTIMAL “IT AIN’T OVER TILL IT’S OVER” THEOREM 22

Optimality of our result. Our Theorem 4.1 is essentially optimal with respect
to p and ρ. Consider the (1 − ρ)-random restriction R1−ρ. First, we check the
optimality in the regime when ρ = Ω((log(1/I∞(f)))−1). Consider the majority
function MAJn : {−1, 1}n → {0, 1},

MAJn(x) =

{
0
∑

i∈n xi > 0,

1 otherwise.

It’s well-known that I∞(MAJn) = Θ(1/
√
n). For ρ = Ω(1/ log n), let R1−ρ =

(S,X) be the random restriction. Say |S| = n − k. With probability at least
1 − exp(−Θ(ρn)), k ∈ (0.5ρn, 2ρn). Then by the Berry-Esseen Theorem, for λ =

O(
√

(n− k) log(n− k)),

P

[∣∣∣∣∣∑
i∈S

Xi

∣∣∣∣∣ ≥ λ

]
= exp

(
−Θ

(
λ2

n− k

))
,

Var

[
MAJn|R1−ρ

∣∣∣∣∣
{∣∣∣∣∣∑

i∈S

Xi

∣∣∣∣∣ ≥ λ

}]
≤ exp

(
−Θ

(
λ2

k

))
.

Thus for p = Ω(1/
√
n− k),

P
[
Var[MAJn|R1−ρ ] ≤ pΘ(

1
ρ )
]
= p.

Our bound on the variance is tight up to a log(1/ρ) factor in the exponent with
respect to ρ.

Second, we check the optimality in the regime when ρ = O((log(1/I∞(f)))−1).
Consider the tribes function TRIBEn : {−1, 1}n → {0, 1},

TRIBEn : x 7→ ANDn/w

· · · ,
w∨

j=1

xij , · · ·

 ,

where for any positive integer w, n is the smallest integral multiple of w such that
P[TRIBEn(x) = 1] ≤ 1/2; ANDn/w : {0, 1}n/w → {0, 1} is the standard logic
and function. In particular, n ≈ ln 2 · w2w, w = log n − log lnn + o(1). Then
I∞(TRIBEn) = Θ(log n/n), and µ(TRIBEn) = Θ(1). Apply random restriction R
that fixes a variable with probability 1 − 1/w = 1 − Θ(log 1/I∞(TRIBEn)). Then
for large enough n,

P[TRIBEn|R ≡ 1] =

(
1−

(
1

2
+

1

2w

)w)n/w

= Ω(1).

Therefore, in this regime with constant probability, there is no variance left under
random restrictions for the tribes function. Our bound is tight up to a log log factor
in the sense that it gives a bound up to the minimum ρ where there is still some
variance left after the random restriction.

4.1. Block sensitivity is large almost everywhere. We now move on to our
second theorem, concerning block sensitivity. The following is a nonasymptotic
version of Theorem 1.2.
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Theorem 4.5. There are absolute constant C > 1. For any Boolean function
f : {−1, 1}n → {0, 1}, let τ = I∞(f) < 1/C, Var[f ] = 2−o(n). Then for large
enough n,

P
x

[
bsf (x) ≥

Var[f ] ln 1/τ

C ln ln 1/τ

]
≥ 1− exp

(
−Θ

(
1

Var[f ]
ln ln

1

τ

))
.

Proof. Let

M =

⌈
2Var[f ] ln 1/τ

C ln ln 1/τ

⌉
.

Let X ∈ {−1, 1}n be random. Randomly partition [n] into M sets, S1, S2, . . . , SM ,
each of size ⌊n/M⌋ with maybe a small number of remaining indices. Note that for
any i ∈ [M ], R = (Si, X) is a random restriction of fixed size. Then by Theorem 4.1,
with probability at least 1 − exp(−Θ(log log(1/τ)/Var[f ])), Var[f |R] > 0. In that
case, exists Ti ⊆ Si, such that f(X ⊕ (−1)1Ti ) ̸= f(X). The statement thus holds
by the following double-counting principle,

1

2
P
x
[bsf (x) < M/2] ≤ P

R
[f |R is constant]. □

4.2. Decision tree complexity of random restriction to monotone func-
tions. We record another application of our main result regarding the decision tree
complexity of the restricted function, which is in some sense a reverse statement to
the famous Håstad’s switching lemma. Let DT(f) denote the deterministic decision
tree complexity of f .10

Theorem 4.6 (Decision tree complexity of random restrictions). There are absolute
constant C > 1. For any monotone function f : {−1, 1}n → {0, 1}, such that

log

(
1

I∞(f)

)
≥ C log

(
1

Var[f ]

)
. (4.10)

Let R be a random restriction that keeps exactly ⌈ρn⌉ variables alive, where

ρ = Ω

(√
log Var[f ]

log I∞(f)
log

log I∞(f)

logVar[f ]

)
.

Then for large enough n,

P
[
DT(f |R) ≥ I∞(f)−Θ(ρ)

]
≥ 1

2
. (4.11)

Proof. For simplicity, assume that ρn is a positive integer. We need the following
well-known result due to O’Donnell et al. [18]: For any Boolean function h,

I∞(h) ·DT(h) ≥ Var[h]. (4.12)

Consider the uniform process X(t). By definition, X((1 − ρ)n) induces a random
restriction R that keeps exactly ρn variables alive. By Lemma 3.1,

PP

[
max

0≤t≤(1−ρ)n
|∂if(X(t))| ≥ I∞(f)

ρ
30

]
≤ I∞(f)

ρ
40 + exp(−ρn/8).

10Although the theorem is stated with respect to the deterministic decision tree complexity,
one can replace the deterministic decision tree complexity by many other complexity measures,
for example, the randomized decision tree complexity, as they are polynomially related for total
functions.
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Since f is monotone, the influence Ii(f |R) = |∂if(X((1− ρ)n))| for any alive coor-
dinate i. The above formula then implies

P
R

[
I∞(f |R) ≥ I∞(f)

ρ
30

]
≤ I∞(f)

ρ
40 + exp(−ρn/8). (4.13)

By Theorem 4.1,

P
[
Var[f |R] ≤ exp

(
−C

ρ
log

e

ρ
· log 8e

Var[f ]p

)]
≤ p. (4.14)

Set p = 1/3. Then combining (4.12)-(4.14),

P
[
DT(f) ≥ I∞(f)−

ρ
60

]
≥ P

[
DT(f) ≥ exp

(
−C

ρ
log

e

ρ
· log 8e

Var[f ]p
+

ρ

30
ln

1

I∞(f)

)]
≥ P

[
Var[f |R] ≥ exp

(
−C

ρ
log

e

ρ
· log 8e

Var[f ]p

)
∧
(
I∞(f |R) ≤ I∞(f)

ρ
30

)]
≥ 1− p− I∞(f)

ρ
40 − exp(−ρn/8)

≥ 1− p− 2I∞(f)
ρ
40 ,

where the first step holds for our choice of ρ and (4.10); the final step holds by
Fact 2.3. Finally, by our choice of ρ and the bound on I∞(f), we have 2I∞(f)

ρ
40 <

1/6. In view of (4.11), we have finished the proof. □

4.3. Social choice and Condorcet winner. In social choice theory, the basic
question is how to aggregate a group of n voters’ preferences to elect one winner
from k candidates. Denote the preference of voter i by x

(a,b)
i between two candidates

a, b ∈ [k]. To be precise, x(a,b)
i = 1 means that the voter i prefers a than b, and

x
(a,b)
i = 0 indicates the other case. For any voter, we assume that her preference

on the k candidates is a total order.
Condorcet suggested the following method to aggregate the social opinions: Let

f : {0, 1}n → {0, 1} denote some voting rule, that aggregates the voters’ preferences
over two candidates; Apply f to all possible pairs of candidates a and b. Then
f(x(a,b)) = 1 will decide that the society prefers a to b, and f(x(a,b)) = 0 the other
way. A Condorcet winner exists, if the society prefers some candidate a than any
other candidate. The Condorset profile is the social preferences on all pairs of
candidates f (a,b).

The Condorcet profile is not necessarily a total order and there is not always a
Condorcet winner. The famous Arrow’s theorem is a statement about this phenom-
enon. In particular, Arrow’s theorem shows that for any voting rule f , assume that
f satisfies unanimity, i.e, f(0n) = 0, f(1n) = 1, then there is always a Condorcet
winner among 3 candidates only if f is a dictator function.

Kakai was the first to introduce the Boolean function analysis tools to the study
of Arrow’s theorem [13], using which Kalai extended the theorem to a more quan-
titative version.

To discuss a quantitative version of Arrow’s theorem, we need a few more as-
sumptions on the voting rule as well as the voters. In particular, we assume the
voting rule f does not have strong bias towards any candidate, i.e., Var[f ] = Ω(1).
For the voters, we assume the impartial culture assumption, i.e., their preferences
are independent and uniformly random from all possible total orders on [k].
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Our main result implies that any Condorcet profile can happen with a non-
negligible probability for any k not too large. This connection between Condorcet
profile and “it ain’t over till it’s over” theorem is pointed out by Friedgut and Kalai.
The proof appears to be in an unpublished manuscript, so we include our proof
here for completeness.

Theorem 4.7. Let there be k ≥ 3 candidates and f some voting rules satisfies the
assumptions discussed above. Suppose that for τ = I∞(f),

k ≤ O

(
log 1/τ

log log 1/τ

)1/3

.

Then any Condorset profile appears with probability at least exp(−Θ(k5 log2 k)).

Proof. Randomly partition the n voters into
(
k
2

)
random subsets V (1,2), V (1,3), . . . ,

V (k−1,k). Fix two candidates, say candidates 1 and 2. Note that for any voter
i, conditioning on her preference on all other pairs of candidates other than that
between 1 and 2, then x

(1,2)
i is not fixed with probability

2(k − 1)!

k!
=

2

k
.

For any (a, b) ∈
(
[k]
2

)
, let S(a,b) be the set of voters i ∈ V (a,b), whose preference

between candidates a and b cannot be deduced from her preferences on all other
pairs. Consider the restriction R(a,b) on x(a,b) that fixes all other coordinates but
those in S(a,b). Then this corresponds to a (1−ρ)-restriction for ρ = 4/(k2(k− 1)).
Thus we can apply Theorem 4.1 by setting p = 1/(k(k− 1)), and conclude that for
with probability at least 1/2, for all (a, b) ∈

(
[k]
2

)
,

Var [f |R(a,b) ] ≥ exp(−Θ(k3 log2 k)).

In other words, any profile can happen with probability at least

(exp(−Θ(k3 log2 k)))(
k
2) = exp(−Θ(k5 log2 k)). □

5. Random Restrictions and Hypercontractivity

In this section, we consider the continuous random process revealing information
about the inputs X ∈ {−1, 1}n gradually in a bit by bit manner. We establish a
hypercontractivity theorem for this “operator,” and then use the new hypercontrac-
tivity theorem to show that the first-order Fourier coefficients remain small under
random restriction given that the original function has small individual influences.

5.1. A martingale setup for random restrictions. Consider the following ran-
dom process. Let x ∈ {−1, 1}n be a uniformly random element. Let (τi)i∈[n] be
random variables uniformly distributed in the interval [0, 1]. τ induces a permuta-
tion on [n]. This is essentially the only relevant information. For technical reasons
we prefer this continuous description in this section. Define S(t) = {i : τi ≤ t}, and
define process X(t) ∈ [−1, 1]n as follows

Xi(t) =

{
0 τi > t,

xi τi ≤ t.

In another word, a random ±1 variable is revealed with probability t at time t.
This random process induces a random restriction R(t) = (S(t), Y ) of function f ,
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that all the variables in S(t) is set according to Y while the other variables are left
alive. Below, we collect some properties of a function f with respect to the above
process.

Proposition 5.1. For any multilinear function f : [−1, 1]n → R and any t ≥ 0,

(i) E[|∇f(X(t))|2] ≤ ∥f∥2∞/(1− t),
(ii) E[∂if(X(t))2] ≤ Ii[f ], for i = 1, 2, . . . , n.

Proof. (i) Note that for i ̸∈ S(t), by definition

∂if(X(t)) = f̂ |R(t)(i).

Thus, by Parseval’s identity,
n∑

i=1

I{τi > t}∂if(X(t))2 ≤ E[(f |R(t))
2] ≤ ∥f∥2∞.

Since I{τi > t} and ∂if(X(t))2 are independent, we have

∥f∥2∞ ≥ E

[
n∑

i=1

I{τi > t}∂if(X(t))2

]
= (1− t)E[|∇f(X(t))|2].

(ii) By Fourier expansion of ∂if,

E
[
∂if(X(t))2

]
= E

(∑
S∋i

f̂(S)χS\{i}(X(t))

)2


= E

[∑
S∋i

f̂(S)2I{τj ≤ t, ∀j ∈ S \ {i}}

]
≤ Ii(f). □

5.2. A hypercontractive inequality for random restrictions. As the time t
increases, the process X(t) reveals more information about the location of X(1).
Thus, for 0 ≤ t ≤ T ≤ 1, we may view f(X(t)) as a “noisy” version of f(X(T )).
It is therefore expected that some hypercontractive inequality holds for those two
expressions. This intuition can be made concrete by the following theorem.

Theorem 5.2 (A hypercontractive inequality). For any 0 ≤ t ≤ T ≤ 1, and any
multilinear f : [−1, 1]n → R, we have for the random process X defined in the
previous section,(

E |f(X(t))|2+ϵ
) 1

2+ϵ ≤
(
E |f(X(T ))|2

)1/2
, (5.1)

where

ϵ = T − t.

Proof. The proof is by induction on n. Once we establish the base case, the induc-
tive step follows from a standard argument. We first show the inductive step since
the base case is more involved.
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Inductive step. Let f(z, x) = zg(x) + h(x), where x ∈ [−1, 1]n, and z ∈ [−1, 1].
Then

E[|f(Z(t), X(t))|2+ϵ]
1

2+ϵ

=

(
E

X(t)

[
E

Z(t)
[|Z(t)g(X(t)) + h(X(t))|2+ϵ]

]) 1
2+ϵ

(i)

≤
(

E
X(t)

[
E

Z(T )
[|Z(T )g(X(t)) + h(X(t))|2]

2+ϵ
2

]) 1
2+ϵ

(ii)

≤
(

E
Z(T )

[
E

X(t)
[|Z(T )g(X(t)) + h(X(t))|2+ϵ]

2
2+ϵ

]) 1
2

(iii)

≤
(

E
Z(T )

[
E

X(T )
[(Z(T )g(X(T )) + h(X(T )))2]

]) 1
2

,

where (i) holds because for any fixed X(t), f = z ·g(X(t))+h(X(t)) is a multilinear
function on z, thus we can apply the inductive hypothesis; inequality (iii) is true,
again because for any fixed Z(T ), f is a multilinear function on x and we apply the
inductive hypothesis; (ii) follows by the Minkowski inequality, in particular,(

E
x

[
E
z
[f(z, x)2]

2+ϵ
2

]) 2
2+ϵ ≤ E

z

[
E
x
[|f(z, x)|2+ϵ]

2
2+ϵ

]
.

Base case. For the base case we consider two scenarios separately. (i) f is
nonnegative (or, nonpositive) function. Let f : [−1, 1] → [0,∞), say f = ax + b.
It suffices to consider the special case when f = ax + 1 for some 0 < a < 1 after
normalization. The reason is as follows: Since f is nonnegative, 0 ≤ |a| ≤ b. Thus,
we can assume a ≥ 0, this assumption does not change E[|f(X(t))|p]. For b = 0,
there is nothing to prove. So we can assume b = 1 by normalization. For a = 0, f
is constant function. The statement is clearly true. Finally, for the case a = 1, it
follows from continuity. After the above simplification, we make the actual analysis.

E[(aX(t) + 1)2+ϵ] = (1− t) +
t

2
((1 + a)2+ϵ + (1− a)2+ϵ)

= 1− t+ t
∑
k≥0

a2k
(
2 + ϵ

2k

)
,

= 1 + t
∑
k>0

a2k
(
2 + ϵ

2k

)
,

where the second step uses Taylor expansion of (1 + x)p for |x| < 1. Note that for
ϵ ∈ [0, 1] and any k ≥ 2,(

2 + ϵ

2k

)
≤ 0.

Hence,

E[(aX(t) + 1)2+ϵ] ≤ 1 + t(1 + ϵ/2)(1 + ϵ)a2. (5.2)

On the other hand,

E[(aX(T ) + 1)2]
2+ϵ
2 = (1 + Ta2)

2+ϵ
2

≥ 1 + (1 + ϵ/2)Ta2, (5.3)
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where the last step follows from Fact 2.1. Compare (5.2) and (5.3), we get that

E[(aX(t) + 1)2+ϵ] ≤ E[(aX(T ) + 1)2]1+ϵ/2

as long as

ϵ ≤ T − t

t
(5.4)

and ϵ ∈ [0, 1].
(ii) f takes both positive and negative values, say f = ax + b. This time it

suffices to consider the special case when f = x+ b, for 0 < b < 1. Since if a is not
1, we can consider the function f/a. In addition, changing b to |b| does not affect
E[|f |p]. Then

E[|X(t) + b|2+ϵ]

= (1− t)b2+ϵ + t/2((1 + b)2+ϵ + (1− b)2+ϵ)

= (1− t)b2+ϵ + t
∑
k≥0

b2k
(
2 + ϵ

2k

)
≤ (1− t)b2 + t(1 + b2(1 + ϵ/2)(1 + ϵ))

= 1 + (1− t)(b2 − 1) + t(1 + ϵ/2)(1 + ϵ)b2, (5.5)

where the third step uses the facts that
(
2+ϵ
2k

)
≤ 0 for k ≥ 2 and ϵ ∈ [0, 1], and that

bx is decreasing on x for 0 < b < 1. On the other hand,

(E[(X(T ) + b)2])
2+ϵ
2

= (T + b2)1+ϵ/2

= (1 + b2)1+ϵ/2

(
1− 1− T

1 + b2

)1+ϵ/2

≥ (1 + (1 + ϵ/2)b2)

(
1− (1 + ϵ/2)

1− T

1 + b2

)
= 1 + (1 + ϵ/2)b2 − (1 + ϵ/2)(1 + b2 + ϵb2/2)

1− T

1 + b2

= 1 + (1 + ϵ/2)b2 − (1 + ϵ/2)(1− T )− (1 + ϵ/2)b2ϵ(1− T )/(2 + 2b2)

≥ 1 + (1 + ϵ/2)b2 − (1 + ϵ/2)(1− T )− (1 + ϵ/2)b2ϵ(1− T )/2, (5.6)

where the third step invokes Fact 2.1 twice. Let R,L denote (5.6) and (5.5), re-
spectively. Further, let B = b2, then R − L is a linear function in B. To verify
that R ≥ L, one only needs verify the cases when B = 0 and B = 1. Recall that
ϵ = T − t, therefore

B = 0 : R− L = 1− (1 + ϵ/2)(1− T )− t

= ϵ− (1− T )ϵ/2

= ϵ(1 + T )/2

≥ 0,
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and

B = 1 : R− L = (1 + ϵ/2)(T − (1− T )ϵ/2− t(1 + ϵ))

= (1 + ϵ/2)(ϵ/2 + Tϵ/2− ϵt)

= (1 + ϵ/2)ϵ/2(1 + T − 2t)

≥ 0.

This concludes our proof. □

Remark 5.3. One can also prove a hypercontractive inequality of the p-norm vs.
2-norm for 1 < p < 2. The proof is analogous.

5.3. ℓ∞-Fourier mass of f |R(t) of the first order. A key quantity in our anal-
ysis is the ℓ∞-Fourier mass of f |R(t) of the first order. Namely,

β∗(t) = max
i ̸∈S(t)

|∂if(X(t))|. (5.7)

In some sense, β∗(t) represents the maximal influence of f |R(t). In particular, for
the special case when f is a monotone Boolean function, β∗(t) is exactly I∞(f |R(t)).
The importance of β∗(t) will become clear in later sections. Next, we show that
with high probability β∗(t) remains small for t even very close to 1. In fact, what
we will show is that

β = max
i∈[n]

|∂if(X(t))|

remains small with high probability. In particular, we establish the following lemma
using the hypercontractive inequality from the last section.

Lemma 5.4 (“influence” remains small under random restriction). Given f :
{−1, 1}n → [−1, 1]. For any 0 ≤ t < 1 such that

8

1− t
ln

2

1− t
≤ ln

1

I∞(f)
. (5.8)

Then for any θ ∈ (0, 1),

P
[
sup

0≤s≤t
β(s) ≥ θ

]
≤ θ−3I∞(f)

1−t
8 .

Proof. Take T = (1 + t)/2 and let

ϵ = T − t. (5.9)
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Then

P
[
sup

0≤s≤t
β(s) ≥ θ

]
≤ P

[
sup

0≤s≤t

n∑
i=1

|∂if(X(s))|2+ϵ ≥ θ2+ϵ

]
(i)

≤ θ−2−ϵ
∑
i

E[|∂if(X(t))|2+ϵ]

(ii)

≤ θ−2−ϵ
∑
i

(E[∂if(X(T ))2])1+ϵ/2

(iii)

≤ θ−2−ϵ
∑
i

Ii(f)
ϵ/2 E[∂if(X(T ))2]

(iv)

≤ θ−2−ϵ I∞(f)ϵ/2

1− T
(v)

≤ θ−2−ϵI∞(f)ϵ/4 (5.10)

where (i) is true due to Fact 2.4 and Theorem 2.6; (ii) follows from Theorem 5.2,
(iii) follows from Proposition 5.1 (ii) , (iv) follows from Proposition 5.1 (i) and (v)
follows by our choice of T , and (5.8). □

5.4. Proof of Lemma 3.1. At this point, we have almost proved Lemma 3.1
except that in the previous section we proved the version with the continuous
random process instead of the discrete one. Next, we show that the continuous
random process and the corresponding probability measure P̃ used in Lemma 5.4
is close to the discrete uniform process generated by Procedure 1 in Section 3 with
measure P in the following sense.

Claim 5.5. Let Et be some event that depends only on X(t). Then for any ϵ ∈ (0, 1),

PP

 ∨
0≤t≤(1−ϵ)n

Et

 ≤ PP̃

 ∨
0≤t̃≤(1−ϵ/2)

Et̃

+ exp(−ϵn/8).

Proof. We couple the two processes in the obvious way. Recall that (τi)i∈[n] is
the random variables uniformly distributed in the interval [0, 1] in the continuous
process. τ induces a permutation π on [n]. As time t̃ goes from 0 to 1 in P̃ ,
whenever a variable is set to value v ∈ {−1, 1}, the corresponding variable in the
discrete process is also set to v. Recall that we denote the set of fixed variables at
time t̃ in P̃ by S(t̃). Then at time t̃ = (1− ϵ/2), by Chernoff bound,

PP̃ [|S(t̃)| < (1− ϵ)n] ≤ exp(−ϵn/8).

Conditioning on |S(t̃)| ≥ (1− ϵ)n, ∨
0≤t≤(1−ϵ)n

Et


P

⇐=

 ∨
0≤t̃≤(1−ϵ/2)

Et̃


P̃

.

The claim follows. □

Now, Lemma 3.1 is an immediate corollary of Lemma 5.4 and Claim 5.5.



AN OPTIMAL “IT AIN’T OVER TILL IT’S OVER” THEOREM 31

Corollary 5.6 (Restatement of Lemma 3.1). Let ϵ > 0 be such that

16

ϵ
ln

4

ϵ
≤ ln

1

I∞(f)
.

Then for any θ ∈ (0, 1),

PP

[
max

0≤t≤(1−ϵ)n
|∂if(X(t))| ≥ θ

]
≤ θ−3I∞(f)

ϵ
16 + exp(−ϵn/8).

Proof. Let t = (1− ϵ/2). The choice of ϵ guarantees that we can apply Lemma 5.4.
In view of Claim 5.5, we are done. □
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